594 research outputs found

    Mineral and biological ice-nucleating particles above the South East of the British Isles

    Get PDF
    A small fraction of aerosol particles known as Ice-Nucleating Particles (INPs) have the potential to trigger ice formation in cloud droplets at higher temperatures than homogeneous freezing. INPs can strongly reduce the water content and albedo of shallow mixed-phase clouds and also influences the development of convective clouds. Therefore, it is important to understand which aerosol types serve as INP and how effectively they nucleate ice. Using a combination of INP measurements and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), we both quantify the INP concentrations over a range of activation temperatures and the size-resolved composition. We show that the INP population of aerosol samples collected from an aircraft over the UK during July of 2017 is consistent with ice-nucleation on mineral dust below about –20 oC, but some other INP type must account for ice-nucleation at higher temperatures. Biological aerosol particles above ~2 ”m were detected based on visual detection of their morphological features in all the analysed samples in concentrations of at least 10 to 100 L-1 in the boundary layer. We suggest that given the presence of biological material, it could substantially contribute to the enhanced ice-nucleation ability of the samples at above –20 oC. Organic material attached to mineral dust could be responsible for at least part of this enhancement. These results are consistent with a growing body of data which suggests mineral dust alone cannot explain the INP population in the mid-latitude terrestrial atmosphere and that biological ice nucleating particles are most likely important for cloud glaciation

    Horizontal and vertical profiles of ozone, carbon monoxide, non-methane hydrocarbons and dimethyl sulphide near the Mace Head observatory, Ireland

    No full text
    International audienceThe distribution of trace gases upwind and above the Mace Head Atmospheric Research Station, Ireland has been determined using measurements made from aircraft. The observations indicate excellent agreement between most non-methane hydrocarbons, dimethyl sulphide (DMS) and ozone measured at the surface, at 390 m overhead and in upwind boundary layer regions of the coastal Atlantic. Vertical profiles above the observatory indicated that local convective events result in a marine influence being detected at 3 km and above. The observation of isoprene from maritime sources at these levels was indicative of very rapid uplift on the hour timescale. Measurements of trace gases were also made directly upwind of the observatory over coastal regions and as far as the deep open ocean beyond the continental shelf. A maximum of 240 pptV DMS was observed in the boundary layer near to the shelf region, declining to a concentration of around 40 pptV at the coastline. The upwelling of nutrient rich waters at the ocean shelf location may be a possible explanation for the high abundance of DMS in these regions. The observations suggest that this region, some 150?200 km from the observatory, would under these environmental conditions have a major influence in the determining the DMS observed on-shore. The spatial distribution of ethene within boundary layer over coastal and deep waters differed significantly from DMS with an almost uniform abundance over all ocean regions

    Processes controlling the concentration of hydroperoxides at Jungfraujoch Observatory, Switzerland

    Get PDF
    International audienceAn automated, ground-based instrument was used to measure gas-phase hydroperoxides at the Jungfraujoch High Altitude Research Station as part of the Free Tropospheric EXperiment (FREETEX) during February/March 2003. A nebulising reflux concentrator sampled ambient air twice hourly, prior to on-site analysis by HPLC speciation, coupled with post-column peroxidase derivatisation and fluorescence detection. Hydrogen peroxide (H2O2) concentrations reached up to 1420 pptv over the 13-day period with a mean of 206±261 pptv (± one standard deviation). Methyl hydroperoxide (CH3OOH) reached up to 921 pptv with a mean of 76±96 pptv. No other organic hydroperoxides were detected. The lack of an explicit diurnal cycle suggests that hydroperoxide concentrations are chiefly influenced by transport processes rather than local photochemistry at this mountainous site. We find elevated concentrations of H2O2 in air masses originating from the south-west indicative of higher concentrations of HOx due to more active photochemistry. Air which has been recently polluted exhibits low H2O2 concentration due to a combination of suppression of HO2 by NOx and deposition. We also conclude that despite being at a high alpine site, the vast majority of the air observed was extensively influence by the boundary layer during our campaign (diagnosed from high CO concentrations and the high NOx to NOy ratio) resulting in deposition of H2O2 to the surface and hence reduced H2O2 concentrations. The concentrations of H2O2 sampled here are consistent with previous box modelling studies of hydroperoxides which invoked a depositional sink

    The role of science in physical natural hazard assessment : report to the UK Government by the Natural Hazard Working Group

    Get PDF
    Following the tragic Asian tsunami on 26 December 2004, the Prime Minister asked the Government’s Chief Scientific Adviser, Sir David King, to convene a group of experts (the Natural Hazard Working Group) to advise on the mechanisms that could and should be established for the detection and early warning of global physical natural hazards. 2. The Group was asked to examine physical hazards which have high global or regional impact and for which an appropriate early warning system could be put in place. It was also asked to consider the global natural hazard frameworks currently in place and under development and their effectiveness in using scientific evidence; to consider whether there is an existing appropriate international body to pull together the international science community to advise governments on the systems that need to be put in place, and to advise on research needed to fill current gaps in knowledge. The Group was asked to make recommendations on whether a new body was needed, or whether other arrangements would be more effective

    Using candidacy theory to explore unemployed over-50s perceptions of suitability of a welfare to work programme: a longitudinal qualitative study

    Get PDF
    Welfare to work interventions seek to move out‐of‐work individuals from claiming unemployment benefits towards paid work. However, previous research has highlighted that for over‐50s, particularly those with chronic health conditions, participation in such activities are less likely to result in a return to work. Using longitudinal semi‐structured interviews, we followed 26 over‐50s during their experience of a mandated welfare to work intervention (the Work Programme) in the United Kingdom. Focusing on their perception of suitability, we utilise and adapt Candidacy Theory to explore how previous experiences of work, health, and interaction with staff (both in the intervention, and with healthcare practitioners) influence these perceptions. Despite many participants acknowledging the benefit of work, many described a pessimism regarding their own ability to return to work in the future, and therefore their lack of suitability for this intervention. This was particularly felt by those with chronic health conditions, who reflected on difficulties with managing their conditions (e.g., attending appointments, adhering to treatment regimens). By adapting Candidacy Theory, we highlighted the ways that mandatory intervention was navigated by all the participants, and how some discussed attempts to remove themselves from this intervention. We also discuss the role played by decision makers such as employment‐support staff and healthcare practitioners in supporting or contesting these feelings. Findings suggest that greater effort is required by policy makers to understand the lived experience of chronic illness in terms of ability to RTW, and the importance of inter‐agency work in shaping perceptions of those involved

    Towards Detecting High-Uptake Lesions from Lung CT Scans Using Deep Learning

    Get PDF
    Automatic detection of lung lesions from computed tomography (CT) and positron emission tomography (PET) is an important task in lung cancer diagnosis. While CT scans make it possible to retrieve structural information, PET images reveal the functional aspects of the tissue, hence combined PET/CT imagery allows for detecting metabolically active lesions. In this paper, we explore how to exploit deep convolutional neural networks to identify the active tumour tissue exclusively from CT scans, which, to the best of our knowledge, has not been attempted yet. Our experimental results are very encouraging and they clearly indicate the possibility of detecting lesions with high glucose uptake, which could increase the utility of CT in lung cancer diagnosis

    Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment

    Get PDF
    The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches'' is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed

    Temporal and spatial variability in stable isotope ratios of SPM link to local hydrography and longer term SPM averages suggest heavy dependence of mussels on nearshore production

    Get PDF
    Temporal changes in hydrography affect suspended particulate matter (SPM) composition and distribution in coastal systems, potentially influencing the diets of suspension feeders. Temporal variation in SPM and in the diet of the mussel Perna perna, were investigated using stable isotope analysis. The ή13C and ή15 N ratios of SPM, mussels and macroalgae were determined monthly, with SPM samples collected along a 10 km onshore–offshore transect, over 14 months at Kenton-on-Sea, on the south coast of South Africa. Clear nearshore (0 km) to offshore (10 km) carbon depletion gradients were seen in SPM during all months and extended for 50 km offshore on one occasion. Carbon enrichment of coastal SPM in winter (June–August 2004 and May 2005) indicated temporal changes in the nearshore detrital pool, presumably reflecting changes in macroalgal detritus, linked to local changes in coastal hydrography and algal seasonality. Nitrogen patterns were less clear, with SPM enrichment seen between July and October 2004 from 0 to 10 km. Nearshore SPM demonstrated cyclical patterns in carbon over 24-h periods that correlated closely with tidal cycles and mussel carbon signatures, sampled monthly, demonstrated fluctuations that could not be correlated to seasonal or monthly changes in SPM. Macroalgae showed extreme variability in isotopic signatures, with no discernable patterns. IsoSource mixing models indicated over 50% reliance of mussel tissue on nearshore carbon, highlighting the importance of nearshore SPM in mussel diet. Overall, carbon variation in SPM at both large and small temporal scales can be related to hydrographic processes, but is masked in mussels by long-term isotope integration
    • 

    corecore