598 research outputs found

    Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome

    Get PDF
    The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs) in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising >90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism's 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These results offer insight into how gut microbes adapt to dietary perturbations at both a community level and from the perspective of a well-adapted symbiont with exceptional saccharolytic capabilities, and illustrate the value of artificial communities

    Basic comparison of particle size distribution measurements of pigments and fillers using commonly available industrial methods

    Get PDF
    The Nanobiosciences Unit of the Joint Research Centre’s Institute for Health and Consumer Protection and Eurocolour, the association of European pigments, dyes and fillers industry, have carried out a program of work to evaluate a number of instrumental methods of measuring particle size distributions as required for assessing compliance versus the EU Recommendation for the definition on nanomaterials. The study has examined the use of five instrumental methods applied to a range of eight widely different but industrially relevant powder pigments. The techniques examined were Laser Diffraction (LD), Dynamic Light Scattering (DLS), Centrifugal Liquid Sedimentation (CLS), Volume Specific Surface Area (VSSA) and Electron Microscopy (EM). This report describes the materials studied and the preparative and analytical methods used. Individual chapters provide an overview of the single analytical methods used together with a summary of the results obtained using each particular method. In considering the results of this study it is important to note that the aim was not to determine the optimum conditions for every individual sample but rather to produce and evaluate data which could be considered representative of that obtainable in industrial laboratories using existing instrumental facilities operated by experienced but not specialised operators. The report discusses the challenges of using these instrumental methods to obtain a simple unambiguous classification of the test materials according to the EC definition.JRC.I.4-Nanobioscience

    A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues

    Get PDF
    Mechanobiologic signals regulate cellular responses under physiologic and pathologic conditions. Using synthetic biology and tissue engineering, we developed a mechanically responsive bioartificial tissue that responds to mechanical loading to produce a preprogrammed therapeutic biologic drug. By deconstructing the signaling networks induced by activation of the mechanically sensitive ion channel transient receptor potential vanilloid 4 (TRPV4), we created synthetic TRPV4-responsive genetic circuits in chondrocytes. We engineered these cells into living tissues that respond to mechanical loading by producing the anti-inflammatory biologic drug interleukin-1 receptor antagonist. Chondrocyte TRPV4 is activated by osmotic loading and not by direct cellular deformation, suggesting that tissue loading is transduced into an osmotic signal that activates TRPV4. Either osmotic or mechanical loading of tissues transduced with TRPV4-responsive circuits protected constructs from inflammatory degradation by interleukin-1α. This synthetic mechanobiology approach was used to develop a mechanogenetic system to enable long-term, autonomously regulated drug delivery driven by physiologically relevant loading

    Maternal Vitamin D Status and the Relationship with Neonatal Anthropometric and Childhood Neurodevelopmental Outcomes: Results from the Seychelles Child Development Nutrition Study

    Get PDF
    Vitamin D has an important role in early life; however, the optimal vitamin D status during pregnancy is currently unclear. There have been recent calls for pregnant women to maintain circulating 25-hydroxyvitamin D (25(OH)D) concentrations >100 nmol/L for health, yet little is known about the long-term potential benefits or safety of achieving such high maternal 25(OH)D concentrations for infant or child health outcomes. We examined maternal vitamin D status and its associations with infant anthropometric and later childhood neurocognitive outcomes in a mother-child cohort in a sun-rich country near the equator (4.6° S). This study was conducted in pregnant mothers originally recruited to the Seychelles Child Development Nutrition Study. Blood samples (n = 202) taken at delivery were analysed for serum 25-hydroxyvitamin D (25(OH)D) concentrations. Multiple linear regression models assessed associations between maternal 25(OH)D and birth weight, infant head circumference, and neurocognitive outcomes in the children at age 5 years. Mothers were, on average, 27 years of age, and the children’s average gestational age was 39 weeks. None of the women reported any intake of vitamin D supplements. Maternal 25(OH)D concentrations had a mean of 101 (range 34–218 nmol/L) and none were deficient (<30 nmol/L). Maternal 25(OH)D concentrations were not associated with child anthropometric or neurodevelopmental outcomes. These findings appear to indicate that a higher vitamin D status is not a limiting factor for neonatal growth or neurocognitive development in the first 5 years of life. Larger studies with greater variability in vitamin D status are needed to further explore optimal cut-offs or non-linear associations (including for maternal health) that might exist among populations with sub-optimal exposure

    Epidemiology, prehospital care and outcomes of patients arriving by ambulance with dyspnoea: An observational study

    Get PDF
    Background: This study aimed to determine epidemiology and outcome for patients presenting to emergency departments (ED) with shortness of breath who were transported by ambulance. Methods: This was a planned sub-study of a prospective, interrupted time series cohort study conducted at three time points in 2014 and which included consecutive adult patients presenting to the ED with dyspnoea as a main symptom. For this sub-study, additional inclusion criteria were presentation to an ED in Australia or New Zealand and transport by ambulance. The primary outcomes of interest are the epidemiology and outcome of these patients. Analysis was by descriptive statistics and comparisons of proportions. Results: One thousand seven patients met inclusion criteria. Median age was 74 years (IQR 61-68) and 46.1 % were male. There was a high rate of co-morbidity and chronic medication use. The most common ED diagnoses were lower respiratory tract infection (including pneumonia, 22.7 %), cardiac failure (20.5%) and exacerbation of chronic obstructive pulmonary disease (19.7 %). ED disposition was hospital admission (including ICU) for 76.4 %, ICU admission for 5.6 % and death in ED in 0.9 %. Overall in-hospital mortality among admitted patients was 6.5 %. Discussion: Patients transported by ambulance with shortness of breath make up a significant proportion of ambulance caseload and have high comorbidity and high hospital admission rate. In this study, >60 % were accounted for by patients with heart failure, lower respiratory tract infection or COPD, but there were a wide range of diagnoses. This has implications for service planning, models of care and paramedic training. Conclusion: This study shows that patients transported to hospital by ambulance with shortness of breath are a complex and seriously ill group with a broad range of diagnoses. Understanding the characteristics of these patients, the range of diagnoses and their outcome can help inform training and planning of services

    System Dynamics modelling to formulate policy interventions to optimise antibiotic prescribing in hospitals

    Get PDF
    © 2020 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Multiple strategies have been used in the National Health System (NHS) in England to reduce inappropriate antibiotic prescribing and consumption in order to tackle antimicrobial resistance. These strategies have included, among others, restricting dispensing, introduction of prescribing guidelines, use of clinical audit, and performance reviews as well as strategies aimed at changing the prescribing behaviour of clinicians. However, behavioural interventions have had limited effect in optimising doctors’ antibiotic prescribing practices. This study examines the determinants of decision-making for antibiotic prescribing in hospitals in the NHS. A system dynamics model was constructed to capture structural and behavioural influences to simulate doctors’ prescribing practices. Data from the literature, patient records, healthcare professional interviews and survey responses were used to parameterise the model. The scenario simulation shows maximum improvements in guideline compliance are achieved when compliance among senior staff is increased, combined with fast laboratory turnaround of blood cultures, and microbiologist review. Improving guideline compliance of junior staff alone has limited impact. This first use of system dynamics modelling to study antibiotic prescribing decision-making demonstrates the applicability of the methodology for design and evaluation of future policies and interventions.Peer reviewe

    Identifying the domains of context important to implementation science: a study protocol

    Get PDF
    Background There is growing recognition that “context” can and does modify the effects of implementation interventions aimed at increasing healthcare professionals’ use of research evidence in clinical practice. However, conceptual clarity about what exactly comprises “context” is lacking. The purpose of this research program is to develop, refine, and validate a framework that identifies the key domains of context (and their features) that can facilitate or hinder (1) healthcare professionals’ use of evidence in clinical practice and (2) the effectiveness of implementation interventions. Methods/design A multi-phased investigation of context using mixed methods will be conducted. The first phase is a concept analysis of context using the Walker and Avant method to distinguish between the defining and irrelevant attributes of context. This phase will result in a preliminary framework for context that identifies its important domains and their features according to the published literature. The second phase is a secondary analysis of qualitative data from 13 studies of interviews with 312 healthcare professionals on the perceived barriers and enablers to their application of research evidence in clinical practice. These data will be analyzed inductively using constant comparative analysis. For the third phase, we will conduct semi-structured interviews with key health system stakeholders and change agents to elicit their knowledge and beliefs about the contextual features that influence the effectiveness of implementation interventions and healthcare professionals’ use of evidence in clinical practice. Results from all three phases will be synthesized using a triangulation protocol to refine the context framework drawn from the concept analysis. The framework will then be assessed for content validity using an iterative Delphi approach with international experts (researchers and health system stakeholders/change agents). Discussion This research program will result in a framework that identifies the domains of context and their features that can facilitate or hinder: (1) healthcare professionals’ use of evidence in clinical practice and (2) the effectiveness of implementation interventions. The framework will increase the conceptual clarity of the term “context” for advancing implementation science, improving healthcare professionals’ use of evidence in clinical practice, and providing greater understanding of what interventions are likely to be effective in which contexts
    • …
    corecore