146 research outputs found

    Mindfulness and Affective Responses to Treadmill Walking in Individuals with Low Intrinsic Motivation to Exercise

    Get PDF
    International Journal of Exercise Science 11(5): 609-624, 2018. An aversion to the sensations of physical exertion can deter engagement in physical activity. This is due in part to an associative focus in which individuals are attending to uncomfortable interoceptive cues. The purpose of this study was to test the effect of mindfulness on affective valence, ratings of perceived exertion (RPE), and enjoyment during treadmill walking. Participants (N=23; Mage=19.26, SD = 1.14) were only included in the study if they engaged in no more than moderate levels of physical activity and reported low levels of intrinsic motivation. They completed three testing sessions including a habituation session to determine the grade needed to achieve 65% of heart rate reserve (HRR); a control condition in which they walked at 65% of HRR for 10 minutes and an experimental condition during which they listened to a mindfulness track that directed them to attend to the physical sensations of their body in a nonjudgmental manner during the 10-minute walk. ANOVA results showed that in the mindfulness condition, affective valence was significantly more positive (p = .02, np2 = .22), enjoyment and mindfulness of the body were higher (p \u3c .001, np2 = .36 and .40, respectively), attentional focus was more associative (p \u3c .001, np2 =.67) and RPE was minimally lower (p = .06, np2 =.15). Higher mindfulness of the body was moderately associated with higher enjoyment (p \u3c .05, r =.44) in the mindfulness but not the control condition. Results suggest that mindfulness during exercise is associated with more positive affective responses

    A Design Exploration of Health-Related Community Displays

    Get PDF
    The global population is ageing, leading to shifts in healthcare needs. It is well established that increased physical activity can improve the health and wellbeing of many older adults. However, motivation remains a prime concern. We report findings from a series of focus groups where we explored the concept of using community displays to promote physical activity to a local neighborhood. In doing so, we contribute both an understanding of the design space for community displays, as well as a discussion of the implications of our work for the broader CSCW community. We conclude that our work demonstrates the potential for developing community displays for increasing physical activity amongst older adults

    WISE x SuperCOSMOS photometric redshift catalog: 20 million galaxies over 3pi steradians

    Get PDF
    We cross-match the two currently largest all-sky photometric catalogs, mid-infrared WISE and SuperCOSMOS scans of UKST/POSS-II photographic plates, to obtain a new galaxy sample that covers 3pi steradians. In order to characterize and purify the extragalactic dataset, we use external GAMA and SDSS spectroscopic information to define quasar and star loci in multicolor space, aiding the removal of contamination from our extended-source catalog. After appropriate data cleaning we obtain a deep wide-angle galaxy sample that is approximately 95% pure and 90% complete at high Galactic latitudes. The catalog contains close to 20 million galaxies over almost 70% of the sky, outside the Zone of Avoidance and other confused regions, with a mean surface density of over 650 sources per square degree. Using multiwavelength information from two optical and two mid-IR photometric bands, we derive photometric redshifts for all the galaxies in the catalog, using the ANNz framework trained on the final GAMA-II spectroscopic data. Our sample has a median redshift of z_{med} = 0.2 but with a broad dN/dz reaching up to z>0.4. The photometric redshifts have a mean bias of |delta_z|~10^{-3}, normalized scatter of sigma_z = 0.033 and less than 3% outliers beyond 3sigma_z. Comparison with external datasets shows no significant variation of photo-z quality with sky position. Together with the overall statistics, we also provide a more detailed analysis of photometric redshift accuracy as a function of magnitudes and colors. The final catalog is appropriate for `all-sky' 3D cosmology to unprecedented depths, in particular through cross-correlations with other large-area surveys. It should also be useful for source pre-selection and identification in forthcoming surveys such as TAIPAN or WALLABY

    The Atacama Cosmology Telescope: Modeling the Gas Thermodynamics in BOSS CMASS galaxies from Kinematic and Thermal Sunyaev-Zel'dovich Measurements

    Get PDF
    The thermal and kinematic Sunyaev-Zel'dovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integrated electron pressure and momentum along the line-of-sight. We present constraints on the gas thermodynamics of CMASS galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) using new measurements of the kSZ and tSZ signals obtained in a companion paper. Combining kSZ and tSZ measurements, we measure within our model the amplitude of energy injection ϵMc2\epsilon M_\star c^2, where MM_\star is the stellar mass, to be ϵ=(40±9)×106\epsilon=(40\pm9)\times10^{-6}, and the amplitude of the non-thermal pressure profile to be αNth<0.2\alpha_{\rm Nth}<0.2 (2σ\sigma), indicating that less than 20% of the total pressure within the virial radius is due to a non-thermal component. We estimate the effects of including baryons in the modeling of weak-lensing galaxy cross-correlation measurements using the best fit density profile from the kSZ measurement. Our estimate reduces the difference between the original theoretical model and the weak-lensing galaxy cross-correlation measurements in arXiv:1611.08606 by half, but does not fully reconcile it. Comparing the kSZ and tSZ measurements to cosmological simulations, we find that they under predict the CGM pressure and to a lesser extent the CGM density at larger radii. This suggests that the energy injected via feedback models in the simulations that we compared against does not sufficiently heat the gas at these radii. We do not find significant disagreement at smaller radii. These measurements provide novel tests of current and future simulations. This work demonstrates the power of joint, high signal-to-noise kSZ and tSZ observations, upon which future cross-correlation studies will improve.Comment: Accepted for publication in Physical Review D. Editors' Suggestion. New Fig. 1-2, Tab.

    Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect

    Get PDF
    Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multifrequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area (≈2100 sq. deg.), arcminute-resolution component-separated maps of the CMB temperature anisotropy and the thermal Sunyaev-Zel’dovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. The tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA

    Atacama Cosmology Telescope: Weighing Distant Clusters with the Most Ancient Light

    Get PDF
    We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS), which have a mean redshift of ⟨z⟩ = 1.08. There are currently no representative optical weak lensing measurements of clusters that match the distance and average mass of this sample. We detect the lensing signal with a significance of 4.2σ. We model the signal with a halo model framework to find the mean mass of the population from which these clusters are drawn. Assuming that the clusters follow Navarro–Frenk–White (NFW) density profiles, we infer a mean mass of ⟨M_(500c)⟩ = (1.7±0.4)×10¹⁴M⊙. We consider systematic uncertainties from cluster redshift errors, centering errors, and the shape of the NFW profile. These are all smaller than 30% of our reported uncertainty. This work highlights the potential of CMB lensing to enable cosmological constraints from the abundance of distant clusters populating ever larger volumes of the observable universe, beyond the capabilities of optical weak lensing measurements

    The Atacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos

    Get PDF
    The scattering of cosmic microwave background (CMB) photons off the free-electron gas in galaxies and clusters leaves detectable imprints on high resolution CMB maps: the thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ respectively). We use combined microwave maps from the Atacama Cosmology Telescope (ACT) DR5 and Planck in combination with the CMASS and LOWZ galaxy catalogs from the Baryon Oscillation Spectroscopic Survey (BOSS DR10 and DR12), to study the gas associated with these galaxy groups. Using individual reconstructed velocities, we perform a stacking analysis and reject the no-kSZ hypothesis at 6.5σ\sigma, the highest significance to date. This directly translates into a measurement of the electron number density profile, and thus of the gas density profile. Despite the limited signal to noise, the measurement shows at high significance that the gas density profile is more extended than the dark matter density profile, for any reasonable baryon abundance (formally >90σ>90\sigma for the cosmic baryon abundance). We simultaneously measure the tSZ signal, i.e. the electron thermal pressure profile of the same CMASS objects, and reject the no-tSZ hypothesis at 10σ\sigma. We combine tSZ and kSZ measurements to estimate the electron temperature to 20% precision in several aperture bins, and find it comparable to the virial temperature. In a companion paper, we analyze these measurements to constrain the gas thermodynamics and the properties of feedback inside galaxy groups. We present the corresponding LOWZ measurements in this paper, ruling out a null kSZ (tSZ) signal at 2.9 (13.9)σ\sigma, and leave their interpretation to future work. Our stacking software ThumbStack is publicly available at https://github.com/EmmanuelSchaan/ThumbStack and directly applicable to future Simons Observatory and CMB-S4 data.Comment: Accepted in Physical Review D, Editors' Suggestio

    A View from the Past Into our Collective Future: The Oncofertility Consortium Vision Statement

    Get PDF
    Today, male and female adult and pediatric cancer patients, individuals transitioning between gender identities, and other individuals facing health extending but fertility limiting treatments can look forward to a fertile future. This is, in part, due to the work of members associated with the Oncofertility Consortium. The Oncofertility Consortium is an international, interdisciplinary initiative originally designed to explore the urgent unmet need associated with the reproductive future of cancer survivors. As the strategies for fertility management were invented, developed or applied, the individuals for who the program offered hope, similarly expanded. As a community of practice, Consortium participants share information in an open and rapid manner to addresses the complex health care and quality-of-life issues of cancer, transgender and other patients. To ensure that the organization remains contemporary to the needs of the community, the field designed a fully inclusive mechanism for strategic planning and here present the findings of this process. This interprofessional network of medical specialists, scientists, and scholars in the law, medical ethics, religious studies and other disciplines associated with human interventions, explore the relationships between health, disease, survivorship, treatment, gender and reproductive longevity. The goals are to continually integrate the best science in the service of the needs of patients and build a community of care that is ready for the challenges of the field in the future
    corecore