312 research outputs found

    Beauty in Sorority Life: An Anthropological Analysis of Beauty Ideals and Body Modification

    Get PDF
    Sororities are social organizations on college campuses categorized by selective membership and exclusive social events for active members. This research focuses on how sorority members\u27 ideas about beauty relate to their appearance management behaviors in order to gauge how sorority culture contributes to their understanding of physical beauty. Ethnographic data collection took place at a university in the southeastern United States. I conducted 17 semi- structured interviews with members of different sororities and participant observation at sorority recruitment events. There\u27s a common thread that connects every interview: beauty and appearance carry importance. Sorority culture encourages women to put effort into their physical appearance to represent themselves and their chapters to their perceived beauty standard. There is clear connection between ideas about health, beauty, and aesthetics in this community. The positive association between health and beauty contributes to personal and societal beauty ideals that are felt by most sorority members. I argue that moralization occurs– where women consider physical health and beauty as synonymous, discouraging and excluding those who do not fit the sorority\u27s beauty standard, who are thus perceived as unhealthy as well as unattractive. These ideals influence body modification behavior. By understanding how the social environment contributes to the perceptions of beauty and ideal bodies, this Thesis contributes to a greater awareness of the motivations of sorority members to engage in beauty enhancement

    Trend and variability in ozone in the tropical lower stratosphere over 2.5 solar cycles observed by SAGE II and OSIRIS

    Get PDF
    We have extended the satellite-based ozone anomaly time series to the present (December 2012) by merging SAGE II (Stratospheric Aerosol and Gas Experiment II) with OSIRIS (Optical Spectrograph and Infrared Imager System) and correcting for the small bias (~0.5%) between them, determined using their temporal overlap of 4 years. Analysis of the merged data set (1984–2012) shows a statistically significant negative trend at all altitudes in the 18–25 km range, including a trend of (−4.6 ± 2.6)% decade<sup>−1</sup> at 19.5 km where the relative standard error is a minimum. We are also able to replicate previously reported decadal trends in the tropical lower-stratospheric ozone anomaly based on SAGE II observations. Uncertainties are smaller on the merged trend than the SAGE II trend at all altitudes. Underlying strong fluctuations in ozone anomaly due to El Niño–Southern Oscillation (ENSO), the altitude-dependent quasi-biennial oscillation, and tropopause pressure need to be taken into account to reduce trend uncertainties and, in the case of ENSO, to accurately determine the linear trend just above the tropopause. We also compare the observed ozone trend with a calculated trend that uses information on tropical upwelling and its temporal trend from model simulations, tropopause pressure trend information derived from reanalysis data, and vertical profiles from SAGE II and OSIRIS to determine the vertical gradient of ozone and its trend. We show that the observed trend agrees with the calculated trend and that the magnitude of the calculated trend is dominated by increased tropical upwelling, with minor but increasing contribution from the vertical ozone gradient trend as the tropical tropopause is approached. Improvements are suggested for future regression modelling efforts which could reduce trend uncertainties and biases in trend magnitudes, thereby allowing accurate trend detection to extend below 18 km

    Technical Note: A SAGE-corrected SBUV zonal-mean ozone data set

    Get PDF
    A stratospheric vertically resolved, monthly, zonal-mean ozone data set based on Satellite Aerosol and Gas Experiment (SAGE) and Solar Backscatter UltraViolet (SBUV) data spanning 1979–2005 is presented. Drifts in individual SBUV instruments and inter-SBUV biases are corrected using SAGE I and II by calculating differences between coincident SAGE-SBUV measurements. In this way the daily, near-global coverage of SBUV(/2) is combined with the stability and precision of SAGE to provide a homogeneous ozone record suitable for trend analysis. The resultant SAGE-corrected SBUV data set, shows, for example, a more realistic Quasi-Biennial Oscillation signal compared to the one derived from SBUV data alone. Furthermore, this methodology can be used to extend the present data set beyond the lifetime of SAGE II

    A global catalogue of large SO \u3c inf\u3e 2 sources and emissions derived from the Ozone Monitoring Instrument

    Get PDF
    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr-1 to more than 4000 kt yr-1 of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005-2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30 % of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80 % over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr-1 and not detected by OMI

    Algorithmic Randomness and Capacity of Closed Sets

    Full text link
    We investigate the connection between measure, capacity and algorithmic randomness for the space of closed sets. For any computable measure m, a computable capacity T may be defined by letting T(Q) be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an effective version of Choquet's capacity theorem by showing that every computable capacity may be obtained from a computable measure in this way. We establish conditions on the measure m that characterize when the capacity of an m-random closed set equals zero. This includes new results in classical probability theory as well as results for algorithmic randomness. For certain computable measures, we construct effectively closed sets with positive capacity and with Lebesgue measure zero. We show that for computable measures, a real q is upper semi-computable if and only if there is an effectively closed set with capacity q

    A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    Get PDF
    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such as the spring ozone maximum over the Canadian Arctic. It also covers higher latitudes than current satellite data. The climatology shows clearly the depletion of ozone from the 1970s to the mid 1990s and ozone recovery in the 2000s. When this climatology is used as the upper boundary condition in an Environment Canada operational chemical forecast model, the forecast is improved in the vicinity of the upper tropospherelower stratosphere region. As this ozone climatology is neither dependent on a priori data or photochemical modeling, it provides independent information and insight that can supplement satellite data and model simulations and enhance our understanding of stratospheric ozone

    The viscosity of R32 and R125 at saturation

    Get PDF
    This paper reports new measurements of the viscosity of R32 and R125, in both the liquid and the vapor phase, over the temperature range 220 to 343 K near the saturation line. The measurements in both liquid and vapor phases have been carried out with a vibrating-wire viscometer calibrated with respect to standard reference values of viscosity. It is estimated that the uncertainty of the present viscosity data is one of 0.5-1%, being limited partly by the accuracy of the available density data. The experimental data have been represented by polynomial functions of temperature for the purposes of interpolation

    Improved Satellite Retrievals of NO2 and SO2 over the Canadian Oil Sands and Comparisons with Surface Measurements

    Get PDF
    Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significantly low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring Instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional-scale (15 km 15 km resolution) air quality model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 (2005-2011) from in situ surface monitors by using the air quality model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in situ instruments (slopes of 0.65 to 1.0, correlation coefficients of greater than 0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals

    Very Strong Emission-Line Galaxies in the WISP Survey and Implications for High-Redshift Galaxies

    Get PDF
    The WFC3 Infrared Spectroscopic Parallel Survey (WISP) uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the Universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin^2 area we analyzed so far. After estimating the AGN fraction in the sample, we show that this population consists of young and low-mass starbursts with higher specific star formation rates than normal star-forming galaxies at any redshift. After spectroscopic follow-up of one of these galaxies with Keck/LRIS, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12+Log(O/H)= 7.47 +- 0.11. The nebular emission-lines can substantially affect the broadband flux density with a median brightening of 0.3 mag, with examples producing brightening of up to 1 mag. The presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z ~ 8 dropout surveys. In order to effectively remove low redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their SED. Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies. Therefore the contribution of emission lines should be systematically taken into account in SED fitting of star-forming galaxies at all redshifts.Comment: Accepted for publication in the Astrophysical Journal. 15 pages, 13 figure
    • …
    corecore