8,491 research outputs found

    Ultracold, radiative charge transfer in hybrid Yb ion - Rb atom traps

    Get PDF
    Ultracold hybrid ion-atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the Yb+^{+} ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion-atom collisions dominates cold ion-atom collisions. For spin dependent processes \cite{kohl13} the anisotropic magnetic dipole-dipole interaction and the second-order spin-orbit coupling can play important roles, inducing couplingbetween the spin and the orbital motion. They measured the spin-relaxing collision rate to be approximately 5 orders of magnitude higher than the charge-exchange collision rate \cite{kohl13}. Regarding the measured radiative charge transfer collision rate, we find that our calculation is in very good agreement with experiment and with previous calculations. Nonetheless, we find no broad resonances features that might underly a strong isotope effect. In conclusion, we find, in agreement with previous theory that the isotope anomaly observed in experiment remains an open question.Comment: 7 figures, 1 table accepted for publication in J. Phys. B: At. Mol. Opt. Phys. arXiv admin note: text overlap with arXiv:1107.114

    Structural parameters for globular clusters in M31 and generalizations for the fundamental plane

    Full text link
    The structures of globular clusters (GCs) reflect their dynamical states and past histories. High-resolution imaging allows the exploration of morphologies of clusters in other galaxies. Surface brightness profiles from new Hubble Space Telescope observations of 34 globular clusters in M31 are presented, together with fits of several different structural models to each cluster. M31 clusters appear to be adequately fit by standard King models, and do not obviously require alternate descriptions with relatively stronger halos, such as are needed to fit many GCs in other nearby galaxies. The derived structural parameters are combined with corrected versions of those measured in an earlier survey to construct a comprehensive catalog of structural and dynamical parameters for M31 GCs with a sample size similar to that for the Milky Way. Clusters in M31, the Milky Way, Magellanic Clouds, Fornax dwarf spheroidal and NGC 5128 define a very tight fundamental plane with identical slopes. The combined evidence for these widely different galaxies strongly reinforces the view that old globular clusters have near-universal structural properties regardless of host environment.Comment: AJ in press; 59 pages including 16 figure

    IrSr_2Sm_{1.15}Ce_{0.85}Cu_{2.175}O_{10}: A Novel Reentrant Spin-Glass Material

    Get PDF
    A new iridium containing layered cuprate material, IrSr_2Sm_{1.15}Ce_{0.85}Cu_{2.175}O_{10, has been synthesized by conventional ambient-pressure solid-state techniques. The material's structure has been fully characterized by Rietveld refinement of high resolution synchrotron X-ray diffraction data; tilts and rotations of the IrO_6 octahedra are observed as a result of a bond mismatch between in-plane Ir-O and Cu-O bond lengths. DC-susceptibility measurements evidence a complex set of magnetic transitions upon cooling that are characteristic of a reentrant spin-glass ground-state. The glassy character of the lowest temperature, Tg=10 K, transition is further confirmed by AC-susceptibility measurements, showing a characteristic frequency dependence that can be well fitted by the Vogel-Fulcher law and yields a value of \Delta_(T_f)/[T_f \Delta log({\omega})] =0.015(1), typical of dilute magnetic systems. Electronic transport measurements show the material to be semiconducting at all temperatures with no transition to a superconducting state. Negative magnetoresistance is observed when the material is cooled below 25 K, and the magnitude of this magnetoresistance is seen to increase upon cooling to a value of MR = -9 % at 8 K

    A flight investigation with a STOL airplane flying curved, descending instrument approach paths

    Get PDF
    A flight investigation using a De Havilland Twin Otter airplane was conducted to determine the configurations of curved, 6 deg descending approach paths which would provide minimum airspace usage within the requirements for acceptable commercial STOL airplane operations. Path configurations with turns of 90 deg, 135 deg, and 180 deg were studied; the approach airspeed was 75 knots. The length of the segment prior to turn, the turn radius, and the length of the final approach segment were varied. The relationship of the acceptable path configurations to the proposed microwave landing system azimuth coverage requirements was examined

    The Aemulus Project III: Emulation of the Galaxy Correlation Function

    Get PDF
    Using the N-body simulations of the AEMULUS Project, we construct an emulator for the non-linear clustering of galaxies in real and redshift space. We construct our model of galaxy bias using the halo occupation framework, accounting for possible velocity bias. The model includes 15 parameters, including both cosmological and galaxy bias parameters. We demonstrate that our emulator achieves ~ 1% precision at the scales of interest, 0.1<r<10 h^{-1} Mpc, and recovers the true cosmology when tested against independent simulations. Our primary parameters of interest are related to the growth rate of structure, f, and its degenerate combination fsigma_8. Using this emulator, we show that the constraining power on these parameters monotonically increases as smaller scales are included in the analysis, all the way down to 0.1 h^{-1} Mpc. For a BOSS-like survey, the constraints on fsigma_8 from r<30 h^{-1} Mpc scales alone are more than a factor of two tighter than those from the fiducial BOSS analysis of redshift-space clustering using perturbation theory at larger scales. The combination of real- and redshift-space clustering allows us to break the degeneracy between f and sigma_8, yielding a 9% constraint on f alone for a BOSS-like analysis. The current AEMULUS simulations limit this model to surveys of massive galaxies. Future simulations will allow this framework to be extended to all galaxy target types, including emission-line galaxies.Comment: 14 pages, 8 figures, 1 table; submitted to ApJ; the project webpage is available at https://aemulusproject.github.io ; typo in Figure 7 and caption updated, results unchange

    The Aemulus Project I: Numerical Simulations for Precision Cosmology

    Get PDF
    The rapidly growing statistical precision of galaxy surveys has lead to a need for ever-more precise predictions of the observables used to constrain cosmological and galaxy formation models. The primary avenue through which such predictions will be obtained is suites of numerical simulations. These simulations must span the relevant model parameter spaces, be large enough to obtain the precision demanded by upcoming data, and be thoroughly validated in order to ensure accuracy. In this paper we present one such suite of simulations, forming the basis for the AEMULUS Project, a collaboration devoted to precision emulation of galaxy survey observables. We have run a set of 75 (1.05 h^-1 Gpc)^3 simulations with mass resolution and force softening of 3.51\times 10^10 (Omega_m / 0.3) ~ h^-1 M_sun and 20 ~ h^-1 kpc respectively in 47 different wCDM cosmologies spanning the range of parameter space allowed by the combination of recent Cosmic Microwave Background, Baryon Acoustic Oscillation and Type Ia Supernovae results. We present convergence tests of several observables including spherical overdensity halo mass functions, galaxy projected correlation functions, galaxy clustering in redshift space, and matter and halo correlation functions and power spectra. We show that these statistics are converged to 1% (2%) for halos with more than 500 (200) particles respectively and scales of r>200 ~ h^-1 kpc in real space or k ~ 3 h Mpc^-1 in harmonic space for z\le 1. We find that the dominant source of uncertainty comes from varying the particle loading of the simulations. This leads to large systematic errors for statistics using halos with fewer than 200 particles and scales smaller than k ~ 4 h^-1 Mpc. We provide the halo catalogs and snapshots detailed in this work to the community at https://AemulusProject.github.io.Comment: 16 pages, 12 figures, 3 Tables Project website: https://aemulusproject.github.io

    The Aemulus Project II: Emulating the Halo Mass Function

    Get PDF
    Existing models for the dependence of the halo mass function on cosmological parameters will become a limiting source of systematic uncertainty for cluster cosmology in the near future. We present a halo mass function emulator and demonstrate improved accuracy relative to state-of-the-art analytic models. In this work, mass is defined using an overdensity criteria of 200 relative to the mean background density. Our emulator is constructed from the AEMULUS simulations, a suite of 40 N-body simulations with snapshots from z=3 to z=0. These simulations cover the flat wCDM parameter space allowed by recent Cosmic Microwave Background, Baryon Acoustic Oscillation and Type Ia Supernovae results, varying the parameters w, Omega_m, Omega_b, sigma_8, N_{eff}, n_s, and H_0. We validate our emulator using five realizations of seven different cosmologies, for a total of 35 test simulations. These test simulations were not used in constructing the emulator, and were run with fully independent initial conditions. We use our test simulations to characterize the modeling uncertainty of the emulator, and introduce a novel way of marginalizing over the associated systematic uncertainty. We confirm non-universality in our halo mass function emulator as a function of both cosmological parameters and redshift. Our emulator achieves better than 1% precision over much of the relevant parameter space, and we demonstrate that the systematic uncertainty in our emulator will remain a negligible source of error for cluster abundance studies through at least the LSST Year 1 data set.Comment: https://aemulusproject.github.io

    Structural parameters for globular clusters in NGC 5128. III. ACS surface-brightness profiles and model fits

    Full text link
    We present internal surface-brightness profiles, based on HST/ACS imaging in the F606W bandpass, for 131 globular cluster (GC) candidates with luminosities 10^4 - 3 x 10^6 solar, in the giant elliptical galaxy NGC 5128. Several structural models are fit to the profile of each cluster and combined with mass-to-light ratios from population-synthesis models, to derive a catalogue of fundamental structural and dynamical parameters parallel in form to the catalogues recently produced by McLaughlin & van der Marel and Barmby et al. for GCs and massive young star clusters in Local Group galaxies. As part of this, we provide corrected and extended parameter estimates for another 18 clusters in NGC 5128, which we observed previously. We show that, like GCs in the Milky Way and some of its satellites, the majority of globulars in NGC 5128 are well fit by isotropic Wilson models, which have intrinsically more distended envelope structures than the standard King lowered isothermal spheres. We use our models to predict internal velocity dispersions for every cluster in our sample. These predictions agree well in general with the observed dispersions in a small number of clusters for which spectroscopic data are available. In a subsequent paper, we use these results to investigate scaling relations for GCs in NGC 5128.Comment: MNRAS, in press. 28 pages. Full data tables available at http://www.astro.keele.ac.uk/~dem/clusters.htm

    Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain

    Get PDF
    Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer
    corecore