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A FLIGHT INVESTIGATION WITH A STOL AIRPLANE FLYING CURVED,

DESCENDING INSTRUMENT APPROACH PATHS

By Margaret S. Benner, Milton D. McLaughlin, Richard H. Sawyer,

Roger Van Gunst, and John J. Ryan 1

Langley Research Center

SUMMARY

A flight investigation using a De Havilland Twin Otter airplane was conducted to

determine the configurations of curved, 60 descending approach paths which would provide

minimum airspace usage within the requirements for acceptable commercial STOL air-

plane operations. Path configurations with turns of 900, 1350, and 1800 were studied; the

approach airspeed was 75 knots. The length of the segment prior to the turn, the turn

radius, and the length of the final approach segment were varied. The relationship of the

acceptable path configurations to the proposed microwave landing system azimuth cover-

age requirements was examined. The airplane was flown by NASA and FAA research

pilots and by a commuter airline captain. The airplane was equipped with a modified

flight director that provided guidance throughout the curved, descending approach.

The results of the investigation indicated that minimum-size path geometry con-

sidered acceptable by the pilots for commercial operations was a combination of 1220 m

(4000 ft) straight segment prior to the turn, a 914 m (3000 ft) radius turn, and a 914 m

(3000 ft) final approach segment. For the minimum-size path geometry considered

acceptable by the pilots for commercial operations, proposed microwave landing system

(MLS) azimuth coverages of ±400 and ±600 would be marginally acceptable for turn radii

of 900 and 1350, respectively. For a 1800 turn, an MLS azimuth coverage of ±810 would

be required. Turn radii of at least 1220 m (4000 ft), however, appear preferable for

routine commercial operations at 75 knots with this type of airplane to avoid occasional

maximum bank angles approaching passenger-comfort limit values and to avoid exceeding

passenger-comfort roll-rate limits under crosswind and gusty conditions. For approaches

with radii of 1220 m (4000 ft) or less, the passenger-comfort limit of ±0.13g in normal

acceleration was equaled or exceeded in three-fourths of the approaches. Maximum

nose-down pitch attitude angles exceeded an assumed passenger comfort limit of -120 in

nearly 60 percent of the approaches. Under crosswind conditions, differences in approach

times between approaches from the upwind side (tailwind in the turn) and the downwind

1 John J. Ryan is associated with Federal Aviation Administration.



side (headwind in the turn) of from 27 seconds on the shortest path to 71 seconds on the

longest path were experienced. A general aviation type flight director system was modi-

fied simply by gain changes in the conventional inputs and the addition of reference bank

angle and reference track angle inputs during the turn. These modifications were found

to be acceptable for steep descending and curved flight-path steering.

INTRODUCTION

In congested terminal areas where airspace is severely limited, short take-off and

landing (STOL) airplanes appear to offer a means of providing increased commercial

transport service without significantly interfering with the present conventional operations.

Noninterfering STOL arrival paths appear to be possible because of the steep-descent

capability and slow-speed maneuverability of these airplanes. In some situations, curved

descending flight paths will be required in order to use the nonallocated airspace for

separation from obstacles, and for providing noise-abatement routings. Guidance for

flight along curved descending approach paths is expected to be available by means of the

recommended microwave landing system (MLS) described in reference 1.

The feasibility of several curved, descending instrument appruaches on a 60 glide

slope for commercial STOL airplanes and the relationship of these paths to proposed

MLS azimuth coverage requirements has been studied in a fixed-base simulator for two

STOL airplanes. (See ref. 2.) In order to extend these studies to the real-world envi'o'-

ment, a flight-test program was conducted at Wallops Flight Center using a De Havilland

Twin Otter airplane equipped with a modified flight director system. The objectives of

the program were to determine under various wind conditions: (1) the minimum-airspace

configurations of curved, descending approach paths (within the constraints of nominal

passenger comfort limit) that were acceptable to pilots, (2) the tracking performance

capabilities with the flight director system, and (3) the suitability of a modified general

aviation flight director for steep, curved descending flight-path guidance.

The airplane crew consisted of an NASA research pilot and an FAA research pilot.

A commuter airline captain helped to determine the acceptability of the curved flight

paths for commercial use.

The results of the flight-test program are presented in terms of airplane attitudes

during the different curved flight paths, the assessment of the modified flight director

system, flight-path deviations at entrance to and exit from the turn to the straight final-

approach segment, the pilot-acceptable turn radii and straight final segments and their

relationships, the MLS azimuth coverage angles required for the acceptable path

configurations, and pilot comments.

2



This investigation was a joint effort of the National Aeronautics and Space
Administration (NASA) and the Federal Aviation Administration (FAA). The FAA pro-
vided the airplane equipped with the basic flight director system and the services of the
project pilot for the FAA STOL tests with this airplane.

SYMBOLS

Values are presented in SI and U.S. Customary Units. Values were obtained in
U.S. Customary Units.

d final approach distance, m

g acceleration of gravity, m/sec2

hmax maximum descent rate (occurring for a minimum of 5 sec)

R radius of final turn, m

V airplane true airspeed, m/sec

x, y, z Cartesian coordinates for computer determination of flight-path deviations

0 pitch angle, deg

bank angle, deg

Oref reference bank angle, deg

Alp heading error, difference between airplane heading and required course, deg

'ref reference track angle, deg

ABBREVIATIONS

ADI attitude director indicator

FM frequency modulated

HSI horizontal situation indicator

ILS instrument landing system
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IRIG Inter-Range Instrumentation Group

MLS microwave landing system

RNAV area navigation

STOL short take-off and landing

VHF very high frequency

VOR VHF omnirange radio navigation station

TEST EQUIPMENT AND METHOD

The test equipment consisted of the test airplane, basic flight instrumentation plus

a modified flight director system, ground-based radar system general purpose computer,

telemeter system, and onboard data recording system. A diagram of the overall system

is presented in figure 1. The Wallops MPS-19 radar tracked the airplane and sent air-

plane position coordinates to the Wallops general purpose computer. The computer com-

pared the radar position of the airplane with a preprogramed approach path and, from

this comparison, calculated localizer and glide-slope deviations. These values, with the

reference and discrete signals shown in figure 1, were telemetered to the airplane. The

localizer and glide-slope deviation data were displayed on the flight director instruments

and, with the other telemetered signals, were used in the airplane flight director to pro-

vide flight director steering information. The signals were recorded onboard and on the

ground in the general purpose computer facility.

Airplane

The test airplane, a De Havilland Twin Otter, is a twin turboprop driven airplane

with high lift devices (double slotted flaps), a high wing, fixed landing gear, and STOL

capability. It is capable of carrying up to 20 passengers and a crew of 2. Table I lists

the airplane characteristics, and a photograph of the airplane is presented in figure 2.

Flight Instrumentation

Views of the pilot's and copilot's instrument panels are presented in figure 3. The

flight director system included an attitude director indicator (ADI), a horizontal situation

indicator (HSI), a controller and computer, and a runway heading selector. The ADI and

the HSI can be seen in the center of the pilot's instrument panel and are shown in greater

detail in figure 4. The flight director pitch and roll command bars of the ADI were
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scaled so that a ±1.9 cm (±0.75 in.) displacement of the pitch command bar was equivalent

to ±280 pitch angle command, and a ±0.5 cm (±0.2 in.) displacement of the roll command

bar was equivalent to a 200 bank angle command. Glide-slope deviations were indicated

by the vertically moving pointer on the right-hand side of the ADI. The pointer movement

was scaled so that the distance between dots represented a deviation of 50 percent of

glide-slope path width above or below the glide-slope center line. The localizer deviation

indicator of the HSI was scaled so that a ±0.952 cm (±0.375 in.) displacement of the bar

was equivalent to the localizer half-beam width. Expanded (increased sensitivity) loca-

lizer deviations were shown on the ADI. The distance between dots represented a devia-

tion of 20 percent of localizer path width to the right or left of the localizer center line.

(The widths of the glide slope and localizer beams, which were functions of the distance

from the runway, are described in the section "Test Program.")

The pilot's instrumentation contained some additional features which were not

included on standard instrument displays. A blue annunciator light located at the top left

of the HSI illuminated 5 seconds before commanded turn initiation and remained on until

5 seconds before commanded turn exit. Another feature provided for improved situation

information in the turns was a servo drive on the course pointer in the HSI. The aircraft

received continuous information from the ground computer on the required course. The

servo then drove the course pointer in such a manner that the required course was always

displayed to the pilot. The turn annunciator light and the servo-driven course pointer

features were developed in the simulation tests of reference 2. The runway heading

selected (fig. 3(b)) was indicated on the HSI by the runway-heading index (fig. 4(b)).

Flight Director System Logic

A short investigation in the flight simulator of reference 2 was used to establish

satisfactory gains and constants for the flight director glide slope and localizer mode.

The simulation included the actual lags in the input signals as given in the later section

"System Lags." The gains and constants used in the flight investigation were made to

correspond as close to the simulator established gains as was practical in field modifica-

tions to the equipment. Block diagrams describing the glide-slope and localizer modes.

are given in figure 5.

The glide-slope mode consisted mainly of a glide-slope deviation signal and an

incremental airplane pitch change signal. The incremental pitch change signal had a

washout time constant of 12 seconds. A reference pitch-down signal of 50 was put in at

approximately 228.6 m (750 ft) before glide-slope intercept to pitch the airplane down for

the glide-slope transition. A lag circuit with a 0.2 second time constant tended to smooth

the glide-slope deviation signal. A glide-slope extension input signal was programed

during the last 152.4 m (500 ft) of altitude to reduce the glide-slope deviation gain to about
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one-third of its original value. The glide-slope deviation signal was dimensioned in

terms of glide-slope path width.

In the localizer mode, localizer deviation and airplane heading error (Ai ) com-

manded an airplane bank angle. The localizer deviation signal was dimensioned in terms

of localizer width and a 0.5 second filter acted to smooth the localizer inputs. The lead

network supplied damping which helped to stabilize the localizer mode. Heading error

was washed out with a time constant of 7.5 seconds. Course error signal was limited to

+47.50 and bank angle signal was limited to ±200. The modifications to the localizer

mode consisted of two extra signals for the curved portion of the localizer path, a refer-

ence bank angle, and a reference track angle. The reference bank angle was expressed as

'ref = arc tan V2g

and was the bank angle required to maintain steady turning flight for a given turn radius.

In a steady turn, a zero roll-command flight director signal was obtained by biasing the

airplane bank angle with the reference bank angle signal.

The reference track angle signal provided a continuous required course along the

curved path relative to runway heading. The relationship between reference track angle

( 4ref) and the airplane heading error (A /) input signal (fig. 5) is shown in the following

diagram:

Airplane heading
Required course

ref Runway heading

Sketch (a)

Radar

The MPS-19 was a precision tracking radar capable of tracking the airplane through

3600 in azimuth and on the final approach down to an altitude of about 61 m (200 ft). The

minimum tracking altitude generally depended on the amount of interference signal

received from background reflections. An S-band beacon (2700 to 2900 MHz) aboard the

airplane provided an enhanced tracking signal for the radar. The MPS-19 tracking radar
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was accurate to ±9.1 m (±30' ft) in range and ±1 mil in azimuth and elevation angles. For

some of the tests, an FPS-16 precision tracking radar was used. This radar was accu-

rate to ±4.6 m (±15 ft) in range and ±0.1 mil in azimuth and elevation angles. With the

FPS-16, the minimum tracking altitude was less than 30.1 m (100 ft). The radar tracking

information was converted to airplane x, y, and z positions, with respect to the

glide-slope ground intercept point in the general purpose computer.

Computer System

The basic component in the computing system was a Honeywell 625 general purpose

digital computer capable of real-time operation. Inputs were from analog to digital con-

verters at a sample rate of 10 times per second. Input data were filtered to reduce noise

and smooth the data; the smoothing induced a time lag into the data of approximately

0.5 second. Data output rate of the computer was 10 times per second.

A detailed explanation of the method used to determine the localizer and glide-slope

deviation by the Wallops computer is given in the appendix.

Telemetry and Recording Systems

The telemetry system was an IRIG proportional bandwidth FM-FM system. Six

channels of information were telemetered to the airplane and are as follows:

Telemetered signals:

Reference bank angle

Reference track angle

Glide-slope deviation

Left turn discrete

Right turn discrete

Time

The localizer deviation was sent to the airplane over a localizer transmitter, a standard

instrument-landing-system (ILS) unit.

In the airplane, telemetered data were recorded on a proportional bandwidth FM

recording system and the conditions of flight were recorded on a constant bandwidth FM

recording system. A total of 25 channels of information were recorded.

System Lags

The many system components - radar, computer, telemetry, flight director - used

in processing the data contributed to the lags in the flight director command signals. The

approximate lags for each system component are as follows:
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Lag source Lag type Localizer mode, Glide-slope mode,
see see

Computer entry, Transport 0.3 0.3
processing, exit

Computer smoothing Phase .5 .5
circuit

Aircraft receiver Phase .7 .4

Flight director Phase .5 .2
computer

The total system lags were approximately 0.7 second in the localizer mode and

0.4 second in the glide-slope mode. They were determined by introducing a 10-Hz

sinusoidal radar antenna oscillation and by measuring the phase lag of the recorded data.

However, the total system lags were believed to be of the same order as the total lags

found in conventional flight director usage, because the damping of the localizer and

glide-slope deviation signals in the aircraft receiver was reduced to the lowest recom-

mended value; thus, the lags in these signals were reduced and to some degree the lags of

the ground equipment were compensated for.

TEST PROGRAM

Figure 6 shows the plan and oblique views of the general shape of the approach paths.

These curved paths were formed by connecting straight and circular flight-path segments

of various sizes. Final approach distance (the distance from the turn exit to runway

threshold) of from 275 m (900 ft) to 455 m (1500 ft) and radii of the turn onto the final

approach of from 1829 m (6000 ft) to 610 m (2000 ft) were used. The paths had a final

turn of either 00, 900, 1350, or 1800 with respect to the runway. The MLS azimuth beam

was assumed to originate on the center line at the far end of the 610-m (2000-ft) runway

(fig. 6(a)) and to have a coverage of either ±400 or ±600, the two coverages proposed for

installations providing curved flight-path capability. (See ref. 1.) The coverage assumed
for each path was the smallest of the two values which included, as a minimum, the com-

plete turn to final approach and provided a minimum glide-slope height of 365 m (1200 ft)

at the MLS azimuth boundary. The latter requirement was imposed so that the part of the
approach prior to glide-slope intercept could be conducted at an altitude no lower than
305 m (1000 ft) with the glide-slope signal thus acquired from far enough below the
glide slope to allow time for the capture maneuver. Table II lists the geometry of the
paths tested, the assumed MLS azimuth coverage angle, and the height of the glide slope
at the MLS azimuth boundary.
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Although the azimuth coverages assumed for each path configuration were sufficient

to include the turn and the provision for glide-slope intercept at 305 m (1000 ft), or above,

coverage was not always sufficient to include a straight segment before the turn long

enough to provide the pilot time to stabilize the airplane on the localizer before turn entry.

For this reason, some special tests were made in which approach guidance was provided

at either 610 m (2000 ft) or 1220 m (4000 ft) before turn entry. Guidance signal infor-

mation for the path configurations and azimuth coverages given in table II was found to be

compatible with the vertical coverage of 00 to 200 recommended in reference 1.

Figure 7 shows the dimensions of the localizer and glide-slope beams; a 60 glide

slope was used for all the tests. The localizer and glide-slope beams were curved to fit

the flight path being investigated.

The tests were initiated by first setting the runway heading on the selector panel

(fig. 3(b)). The aircraft was stabilized at cruise speed (155 knots) at the specified altitude

for the path being tested, and the altitude-hold mode on the flight director was manually

activated. The altitude selected was such that the glide slope would be intercepted from

below. However, an altitude of 305 m (1000 ft) was assumed as the minimum for flight

prior to final descent guidance acquisition. The pilot followed radar vectors radioed from

the ground to obtain the correct heading to acquire the localizer center line outside the sim-

ulated MLS area. With use of radar position information radioed from the ground, the pilot

slowed the aircraft to 100 knots for localizer intercept and selected the "Glide-slope arm"

and "VOR/Localizer" flight director modes. This procedure simulated an RNAV approach

to the MLS coverage area. When the aircraft entered the simulated MLS coverage area,
flight director guidance information was sent to the airplane over the telemetry link

activating the selected modes. The pilot then used the flight director display information

to fly the curved approach path. The pilot wore a visor-type eyeshade which obstructed

his outside view to simulate instrument flight conditions. Transition from the glide-slope

arm to the glide-slope capture mode was automatic as the airplane entered the glide-slope

beam. The pilot slowed the aircraft to 85 knots about 1.8 km (1 n. mi.) before glide-slope
intercept by use of 200 of flaps and adjusting power as necessary. He slowed the aircraft
to the STOL approach speed of 75 knots at the glide-slope intercept using full flaps (37.50),
and by setting the propeller pitch control for low angle, and adjusting the power as neces-

sary. The copilot took over and executed a missed approach at a decision height of from
61.0 m (200 ft) to 30.5 m. (100 ft).

The airplane was operated by a crew consisting of an NASA research pilot and an

FAA research pilot alternating as pilot and copilot. Also, a commuter airline pilot flew
several paths to evaluate their acceptability for commercial use.
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Test Conditions

Figure 8 shows the wind-speed and direction profiles for 7 test days. Wind speeds

varied from 4 to 16 knots at ground level and varied greatly with altitude and day of test.

The wind data were received from theodolite balloons released every half-hour during the

tests. Although up to six sets of balloons were released in 1 day, only a representative

data set is presented for each day. However, when each test run was analyzed, the cor-

responding time period balloon wind data were used. Each day's wind profile has a symbol

beneath it. This symbol is used throughout this report to indicate data from that particu-

lar test day. Other meteorological data continuously recorded were temperature, baro-

metric pressure, humidity, and ground wind speed and direction.

RESULTS AND DISCUSSION

The results of the STOL curved descending instrument approach path program are

presented in figures 9 to 16. Pilots' comments and opinions on the various paths are

included in this discussion. Passenger-comfort and piloting flight condition limits used

to help rate the acceptability of each path were as follows:

Flight condition Limit Basis for limit

Bank angle . . . . . . 300 Airline practice

Pitch (floor) angle . . -120 Pilot opinion

Descent rate ..... 365 m/min Airline practice,
(1200 ft/min) unpressurized cabin

Incremental normal
acceleration . . . +0.13g Reference 3

Roll rate . . . . .. 100 /sec Reference 4

The pitch angle limit is based on pilot opinion of passenger acceptance in lieu of any known

published results on the effect of this factor on passenger comfort. The incremental nor-

mal acceleration limit is based on values obtained in laboratory experiments at low fre-

quency (0.2 Hz). In these experiments a root-mean-square value of 0.09g was rated

objectionable by 50 percent of the subjects. An objectionable rating indicated the subject

was adversely affected to the point he would try to avoid flying on that airplane again.

Because peak values of acceleration were measured in the present tests, 0.13g was used as

the limit value for correspondence with the 0.09g root-mean-square value. The roll rate

limit is based on flight experiments in which turn reversals were made. The roll rate of

10 0/sec was rated as having negligible demands on the passenger and his comfort state;

the airplane motion was noticeable, but was not an appreciable factor in comfort or activity.
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Typical Results

Typical results of the pertinent quantities recorded are shown in figure 9. The rec-

ords end at the decision height of 30.5 m (100 ft). Figure 9(a) shows a radar plot of the

airplane position relative to the horizontal and vertical flight paths to be flown. The solid

lines represent the localizer and glide-slope center lines and beam boundaries. The dot-

ted lines are the consecutive positions of the airplane at 1-second intervals. The assumed

MLS azimuth coverage angle of 400 is indicated. The location where the flight path

entered the assumed MLS coverage was the point at which telemetry of the guidance data

from the ground was initiated. Figure 9(b) shows pertinent flight conditions as a function

of time along the flight path. Glide-slope acquisition and the time period in the turn are

indicated. For this test, the glide slope was acquired at 130 seconds before reaching an

altitude of 30.5 m (100 ft). The turn occurred in the period from 126 seconds to 35 sec-

onds before reaching an altitude of 30.5 m (100 ft). Figure 9(c) shows some of the input

and output signals to the flight director computer. The pitch- and roll-command signals

were calculated by the onboard flight director computer. (See fig. 5.) The pitch- and

roll-command signal variations from zero represent the pilot's failure to satisfy the

commands. The scales on these two time histories are deviation signals normalized with

respect to the equivalent signal for the half-beam width deviation. The reference track

angle signal was calculated by the Wallops ground-based general purpose computer and

was continuously sent to the airplane beginning at 152 seconds before an altitude of 30.5 m

(100 ft) was reached. This time corresponds to the airplane's entrance into the assumed

MLS coverage. Although the reference bank angle signal was sent 14 seconds before the

turn initiation, this signal was not switched to the flight director computer until a discrete
signal was transmitted from the ground 5 seconds before turn entry.

Flight Director Characteristics

The localizer and glide-slope deviations and flight director commands are pre-

sented as a function of time in figure 10 for a noncurved (straight-in) instrument approach.

The values are presented as ratios of deviations to half-scale beam widths. Zero time

corresponds to an altitude of 30.5 m (100 ft). During the run a deliberate departure from

glide slope and localizer was made by the pilot to evaluate the operating characteristics

of the flight director. The glide-slope deviation took place from 120 seconds to 95 seconds

and the localizer deviation from 40 seconds to 25 seconds.

Initially, the aircraft was on the localizer and descending to acquire the glide slope.

The glide slope was acquired at about 135 seconds; from 135 seconds to 68 seconds, except
for the intentional offset, the pitch-command and glide-slope deviations were small and

constant. The result of the intentional offset was a quick smooth recovery of the glide

slope with no overshoots. Below 68 seconds, the glide-slope deviations increased slightly
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in size and appeared to become cyclic in nature. This transition to an apparently neu-

trally stable system had been noted in other flight director tests (ref. 5) and is the result

of the effective system gain being too high. This increase in effective gain is caused by

the decrease in glide-slope width as the runway is approached. For the present investiga-

tion, the effective gain appeared to become too large for a glide-slope half-width of approxi-

mately 76.5 m (250 ft), or less. The glide-slope half-width of 76.5 m (250 ft) occurs at

a distance from the runway threshold of about 2360 m (7200 ft), which corresponded to an

altitude of 236 m (720 ft) for a 60 glide slope. On a standard operational flight director

system, a "glide-slope extension" mode automatically desensitizes the glide-slope devia-

tion gain at, or below, a specified "trip" altitude. On standard glide-slope systems, this

altitude corresponds to a specified glide-slope half-width as in the present test system.

In this manner, the effective system gain is kept low enough to result in a stable system.

Initially, the minimum half-width of the glide slope was limited to 61.0 m (200 ft)

in an attempt to keep the effective gain to an acceptable level with the glide-slope-

extension trip altitude set at 47.5 m (150 ft). Pilot comments indicated that the system

gain was not acceptable below an altitude of 213 m (700 ft). Rather than increase the

minimum glide-slope half-width, an attempt was made to desensitize the gain at the lower

altitudes by increasing the trip altitude. The trip altitude was adjusted to the maximum

value of 152 m (500 ft). The glide-slope deviation gain was changed, beginning at the trip

altitude from 1.0 to 0.33, over a period of 15 seconds. The pilots noted and the records

show that there was a gain problem at an altitude of approximately 213 m (700 ft), but

there was also some improvement below an altitude of 152 m (500 ft).

The intentional offset from the localizer took place at a time of ;40 seconds. The

recovery began at about 25 seconds and was smooth and rapid. It is to be noted in fig-

ure 10 that, throughout the run, while the roll-command signals were small, the local-

izer deviations were on the order of +0.2 half-beam width. This condition indicated low

sensitivity of the localizer mode to localizer deviations. The pilots became aware of the

localizer deviations by use of the HSI display and reduced these deviations by supplying

a lead correction. This correction effectively increased the localizer system damping
but, in turn, increased the pilots' workload in using the localizer mode.

Pilot Comments

Airplane instrumentation.- The pilots felt the flight director system was necessary

for flying curved approach paths and, as implemented, provided acceptable guidance.
However, the pilots suggested a few improvements. They felt that the localizer command
bar was not sensitive enough, because it moved only +0.51 cm (±0.2 in.) full scale. The
airplane had to be far off the localizer center line for the indicated correction to be
noticeable. Also, the pilots believed the pitch command bar to be too active close to
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touchdown (starting at about 1.8 km (1 n. mi.)). The rate of the commanded correction was

considered to be too high. Farther out, the commanded corrections were at an acceptable

rate for the pilots to keep the pitch attitudes within reasonable values. The pilots deter-

mined that a pitch command limiter below 122 m (400 ft) was needed.

During several runs, the pilots made deliberate and significant (up to full half-beam

width) deviations from the localizer and glide-slope center lines in the turn to determine

the ability of the flight director to give commands to regain the path. Most recoveries

commanded by the system were very smooth with no large overshoots. The glide-slope

bar commanded small overshoots several times; the localizer bar commands resulted in

some small residual localizer error.

The automatically up-dated required course feature of the HSI was of value in

allowing the pilot to maintain a general awareness of his position relative to the desired

course. The pilots indicated that the lack of range information made the proximity to

touchdown difficult to assess. Presentation of the distance-to-touchdown along the flight

path as displayed in a digital counter in the tests of reference 2 would have been useful.

The pilots felt that although they performed a missed approach at 30.5 m (100 ft) to

61 m (200 ft) for each run, the flight director guidance was good enough to ensure that

they could have continued the approach in good visibility to a landing on a typical 610 m

(2000 ft) STOL runway for most runs. Glide-slope and localizer deviation errors were

used with the flight director by the pilots as a "how goes it" indication to help determine

the urgency of the correction commanded by the flight director.

Acceptable flight-path configurations.- The smallest turn radius, 610 m (2000 ft),
was considered to be unacceptable because of the high workload and the large bank angles,
especially in the turn when a tailwind existed. The 732 m (2400 ft) turn radius was con-

sidered to be acceptable unless a tailwind existed in the turn. The airline pilot felt that

a 914 m (3000 ft) turn radius wasthe minimum turn radius acceptable for commercial

operations based on the same criteria.

The acceptability of the various final approach distances was influenced by the turn

radius used. The 455 m (1500 ft) final approach distance was acceptable only when used

with the largest turn radius 1829 m (6000 ft). A final approach distance of 914 m (3000 ft)

was acceptable with the minimum acceptable turn radius, 914 m (3000 ft). The airline

pilot preferred a final approach distance of 914 m (3000 ft) to provide time to stabilize

the final approach with consideration of crosswinds, wind shears, and pilot errors. Also,
for the approaches shorter than 914 m (3000 ft), the turn maneuver was considered to be

unsafe in instrument flight because of the low altitude.

Special tests were conducted to study the length requirement for a straight segment

before the turn to provide the pilot time to stabilize on the localizer before turn entry.
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The pilots indicated that the 610 m (2000 ft) distance was too short, but that the 1220 n

(4000 ft) distance was sufficient.

The minimum-size path dimensions considered to be acceptable in these flight tests

are smaller than those determined in the simulation tests of reference 2. In the simula-

tion tests, a 914 m (3000 ft) final approach condition was considered to be too short to

provide time to stabilize the airplane on the flight path, and the turn rollout was at too

low an altitude for safety. A turn radius of 914 m (3000 ft) was acceptable only with a

1829 m (6000 ft) final approach distance and winds of 10 knots or less. Also, a straight

segment before the turn of 1.8 km (1 n. mi.) was preferred. The reasons for these

differences in the acceptable path dimensions between the flight and simulator tests are

not understood; however, the larger values for the simulation tests may be the result,

in part, of a more conservative attitude of the airline pilots used exclusively in that

experiment.

Pilot workload.- The workload of flying the curved, descending approaches with the

flight director guidance was considered by the pilots to be essentially the same for turn

radii ranging from 732 m (2400 ft) to 1829 m (6000 ft). The workload was rated as

essentially equal to that for a straight-in approach with the equivalent guidance. One pilot

estimated that the task of flying the curved, descending approaches required 80 percent of

his concentration, half, or more, of this concentration being devoted to speed control.

For the curved, descending approaches made with only localizer and glide-slope

deviation information for steering guidance, the pilots reported that flight-path control

was very difficult and the workload was unacceptably high, although on occasion, the

tracking performance appeared to be acceptable. On the curved section of the path, the

pilots were unable to determine the correct amount of heading change needed to reacquire

the localizer center line from a deviation without an undershoot or overshoot. For some

of the smaller radius paths, the pilots were simply unable to fly the pattern. The pilots

all agreed that flight director guidance was essential for acceptable workload in flying

curved, descending approach paths.

Approach Times

For the different curved flight paths of the tests, figure 11 shows the variations in

approach times from turn entrance to arrival at an altitude of 30.5 m (100 ft). Data from

straight-in approaches are also shown. The data have been segregated by wind direction

on final approach. (See symbols on fig.) For the crosswind approaches, flagged sym-

bols denote approaches with a tailwind component in the turn; unflagged symbols denote

approaches with a headwind component in the turn.

As would be expected, the results show that approaches with a headwind on the final

approach path took longer than those flown with a tailwind, and those with a headwind
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in the turn generally took longer than those with a tailwind in the turn. The spread in

approach time for the crosswind conditions experienced increased from 27 seconds for the

shortest path to 71 seconds for the longest path.

These results are of particular significance for an air traffic control situation

involving the sequencing of traffic by means of curved paths from opposite directions onto

a common final approach path. In crosswind conditions, the traffic from one direction

will experience a headwind in the turn, the traffic from the other direction, a tailwind in

the turn. The difficulty of spacing traffic at 1 minute intervals under such conditions

without computer assistance for the controller is evident.

Descent Rates

For each approach, the maximum descent rate hmax (occurring for a minimum

of 5 sec) is shown plotted against airspeed in figure 12. The data are categorized by

wind direction on final approach (symbols). For the crosswind approaches, flags are

used on the symbols to denote approaches with a tailwind component in the turn; unflagged

symbols denote approaches with a headwind component in the turn.

Comparison of the hmax values with calculated descent rates for flight on a

60 glide slope with no wind (dashed line) shows, as expected, generally higher values for

the approaches with a tailwind on final path or in the turn and generally lower values for

the approaches with a headwind on final path or in the turn. For the wind conditions

experienced, the increases in hmax from tailwind effects did not exceed approximately

90 m/min (300 ft/min). In a number of cases, the hmax values for approaches with a

headwind on the final path or in the turn were as large or larger than the hmax values

in approaches affected by tailwinds. These high values generally resulted during

recoveries from flight-path deviations which occurred in gusty conditions. With one

exception, a straight approach with a tailwind, the hmax values did not exceed

350 m/min (1200 ft/min), the passenger-comfort limit; a similar result was obtained in

the simulation tests of reference 2 with tailwinds up to 20 knots.

Airplane Attitudes

Maximum bank angle.- For a number of approaches, the maximum bank angle (held

for a minimum of 5 sec) is presented as a function of turn radius in figure 13. The data

presented are limited to those approaches in which localizer deviations did not exceed

0.2 of the beam half-width to eliminate approaches in which large lateral offsets were
made to assess the capability of the flight director guidance. The data are categorized
by wind direction on final approach (symbols) and for crosswind approaches by tailwind

in the turn (flags).
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The results show a significant increase in the maximum bank angles used compared
with the calculated values in turns of less than 1220 m (4000 ft) radius to values approach-

ing the passenger-comfort limit of 300 . These results apparently reflect the difficulty of

maintaining flight path for small turn radii especially seen for crosswind approaches with

a tailwind component in the turn. Although the maximum bank angles did not exceed the

passenger-comfort limit value for these small turn radii, with this type of airplane, turn

radii of 1220 m (4000 ft) or greater would appear to be preferable for routine commer-

cial operations at an approach speed of 75 knots.

The results of the simulation tests of reference 2 showed similar increases in the

maximum bank angle values with decrease in the turn radius from 1829 m (6000 ft) to

914 m (3000 ft) in both no-wind and crosswind conditions up to 20 knots. Similarly, the

values of the maximum bank angle approached the passenger-comfort limit for turn radii

of 914 m (3000 ft) and 720 m (2400 ft).

Maximum pitch-down angle.- In 57 approaches, the peak value of the maximum pitch

angle (held for at least 5 sec) was found to be -200. In 59.7 percent of the approaches

the maximum pitch angle exceeded -12o (the assumed passenger-comfort limit). The

analysis was limited to approaches with headwind or crosswind conditions. These results

agree with those of reference 2, in which the peak maximum pitch angle for this airplane

in STOL-type approaches was found to be -17.90; in 74.3 percent of the approaches the

maximum pitch angle exceeded -12o. As discussed in reference 2, STOL-type approaches

(with non-powered-lift airplanes) involve pitch-down angles which generally exceed the

assumed passenger-comfort limit and investigation of passenger reaction to these high

pitch-down angles would appear to be important.

Airplane roll rates.- For a number of approaches, the maximum roll rate measured

in the turn is presented as a function of turn radius. (See fig. 14.) The data presented

are limited to those approaches in which localizer deviations did not exceed 0.2 of the

beam half-width to eliminate approaches in which intentional lateral offsets were made to

assess the capability of the flight director guidance. The data are categorized by wind

direction on final approach (symbols) and for crosswind approaches by tailwind in the

turn (flags).

The results show a general increase in the maximum roll rates used as the turn
radius becomes smaller. These results, like those discussed under the section
"Maximum bank angle," apparently reflect the difficulty of maintaining a flight path for

small turn radii, especially for crosswind approaches with a tailwind component in the
turn. For turns of 914 m (3000 ft) radius or less, the maximum roll rates, on occasion,
exceeded 10 0/sec, the highest maximum roll rate which was considered to be acceptable

for passenger comfort. (See ref. 4.) These results support the maximum bank angle
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results which indicated that turn radii of 1220 m (4000 ft), or greater, appear to be

required for routine commercial operations.

Airplane normal accelerations.- The probability of equaling or exceeding levels of

maximum incremental normal acceleration from the steady-state (Ig) condition based on

66 approaches is given in figure 15. The incremental normal accelerations arise mainly

from random pitch rate inputs made for flight-path control. The results shown are

limited to approaches made with a turn radius of 1220 m (4000 ft), or less.

The results indicate that the passenger-comfort limit of ±0.13g in incremental nor-

mal acceleration was equaled or exceeded in about three-fourths of these approaches.

Statistical comparison of these results with those for approaches made with larger turn

radii and final approach distances is not possible because of a limited sample. However,
the maximum incremental normal acceleration noted in three-fourths of the approaches

with a turn radius of 1829 m (6000 ft) and a final approach distance of 914 m (3000 ft),
was less than +0.lg. The results for the approaches with the smaller dimensions support

the conclusion based on the maximum roll attitude and roll rate results that turn radii of

1220 m (4000 ft), or greater, appear to be required for routine commercial operations

unless the airplane is equipped with a ride comfort system.

Turn entrance and exit deviations.- Localizer and glide-slope deviations are pre-

sented at turn entries and exits in figures 16(a) and 16(b), respectively. The data are

presented for turn radii of 1829 m (6000 ft), 1219 m (4000 ft), 914 m (3000 ft), 732 m

(2400 ft), and 610 m (2000 ft). The solid symbols in figure 16(a) denote that the glide

slope had not been intercepted at turn entry. For these cases, glide-slope deviations

were plotted as zero, as the actual deviation from glide slope is not a measure of how well

the pilot is tracking by use of approach guidance. Positive glide-slope deviations denote

that the airplane is above the glide slope. Most of the nonzero glide-slope deviation

values in figure 16(a) are positive because, in most cases, the pilot did not pitch the air-

craft down enough at glide-slope intercept and, therefore, initially ended above the

glide path.

From figure 16(a); it can be seen that localizer deviations at turn entry varied

from 2.81 beam half-width outside (680 m (2230 ft)) to 3.15 inside (750 m (2450 ft)).

These large deviations are associated with several runs flown with deliberate localizer

errors introduced at the start of the run to assess the capability of the flight director

guidance. The pilots were usually able to correct the localizer deviations quickly;

however, some cases of large localizer deviations required large rolling maneuvers

(bank angles greater than 300) in order to make the corrections. Bank angles of this

magnitude are unacceptable from a passenger-comfort level.
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Localizer and glide-slope deviations at turn exit are presented in figure 16(b). The

flagged symbols denote the wind blowing the aircraft toward the outside of the turn at turn

exit. The results show that the localizer deviations at turn exit for all turn radii were

less than 0.2 inside and 0.4 outside. The localizer deviations were centered about the

localizer center line for the 1829 m (6000 ft) turn. As the turn radius was decreased,

however, the localizer deviations tended to become mostly outside deviations. For the

smaller turn radii, the turn rate required made the localizer command signal more active

and hard to follow. Therefore, the pilot tended to get behind and toward the outside at

turn exit. From the data of figure 16(b), no definite effects of the wind could be drawn.

Glide-slope deviations for all turns were generally less than *0.15 and were about equally

spaced about the glide-slope center line.

Figure 16 illustrates that for all the turn entrance conditions shown in figure 16(a),

including those with deliberate large localizer deviations, the pilots using flight director

guidance were able to correct the deviations to the small values shown in figure 16(b). In

general, successful approaches to an altitude of 30.5 m (100 ft) were accomplished.

MLS AZIMUTH COVERAGE REQUIREMENTS

On the basis of the minimum-size path geometry considered acceptable by the

pilots (see discussion under Pilot Comments - Acceptable flight-path configurations), an

analysis of the MLS azimuth coverage requirements was made. The analysis was made

by assuming an MLS localizer antenna installation at the far end of the runway as shown

in figure 6 and as proposed in reference 1. By using minimum values of turn radius and

final approach distances of 914 m (3000 ft) and a straight segment of 1220 m (4000 ft) for

localizer acquisition before the turn, the following azimuth coverage requirements were

determined from geometrical considerations:

MLS azimuthTurn angle,
deg coverage,deg deg

90 ±48

135 ±62
180 ±81

These results indicate that the proposed system having an azimuth coverage of ±400

might be marginally acceptable for minimum-size STOL airplane approach paths having a

900 turn to final. Similarly, the ±600 azimuth coverage system might be marginally

acceptable for 1350 turns to final. However, to accommodate minimum-size paths with

1800 turns to final, an azimuth coverage of ±810 would be required. Of course, by
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lengthening the final approach distance, the 900 and 1350 turn approaches can be readily

accommodated with the ±400 and ±600 azimuth-coverage systems. The final approach

distance for the 1800 turn approach would have to be lengthened about 732 m (2400 ft) to

be accommodated by the ±600 azimuth-coverage system. Where land and lack of obstruc-

tions permitted, the minimum size paths could be accommodated, of course, by moving

the localizer antenna the same distances beyond the far end of the runway.

With the exception of the 1800 turn configuration, the MLS azimuth coverage require-

ments for these tests are somewhat higher than those determined in the simulation tests

of reference 2. In reference 2, ±400 and ±600 angles were found to be adequate for the 900

and 1350 turn configurations, and ±800 angles were found to be necessary for the 1350

turn configuration. The differences in requirements are primarily the result of the smaller

size path dimensions found acceptable in these tests compared with the simulation tests.

(See discussion under "Acceptable flight-path configurations.")

CONCLUSIONS

A flight investigation using a De Havilland Twin Otter airplane was conducted to

determine the configurations of curved, 60 descending approach paths which would provide

minimum airspace usage within the requirements for acceptable commercial STOL (short

take-off and landing) airplane operations. Path configuration with turns of 900, 1350, and

1800 were studied. The approach airspeed was 75 knots; the length of the segment prior

to the turn, the turn radius, and the length of the final approach segment were varied.

The relationship of the acceptable path configurations to the proposed microwave landing

system azimuth coverage requirements was examined. The airplane was flown by NASA

and FAA research pilots and by a commuter airline captain. The airplane was equipped

with a modified flight director that provided guidance throughout the curved descending

approach.

The results of the investigation indicated that

(1) Minimum-size path geometry considered to be acceptable by the pilots for

commercial operations was a combination of a 1220 m (4000 ft) straight segment prior

to the turn, a 914 m (3000 ft) radius turn, and a 914 m (3000 ft) final approach segment.

(2) For the minimum-size path geometry considered acceptable by the pilots for

commercial operations, proposed microwave landing system (MLS) azimuth coverages of

±400 and ±600 would be marginally acceptable for turn radii of 900 and 1350, respectively.

For a 1800 turn, an MLS azimuth coverage of ±810 would be required.

(3) Turn radii of at least 1220 m (4000 ft), however, appear to be preferable for

routine commercial operations at 75 knots with this type of airplane to avoid occasional
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maximum bank angles approaching passenger-comfort limit values and to avoid exceeding

passenger-comfort roll-rate limits under crosswind and gusty conditions.

(4) For approaches with radii of 1220 m (4000 ft), or less, and final approach dis-

tances of 914 m (3000 ft), or less, the passenger-comfort limit of ±0.13g in normal

acceleration was equaled or exceeded in three-fourths of the approaches.

(5) Maximum nose-down pitch attitude angles exceeded a passenger-comfort limit

of -120 in nearly 60 percent of the approaches.

(6) Under crosswind conditions, differences in approach times between approaches

from the upwind side (tailwind in the turn) and the downward side (headwind in the turn) of

from 27 seconds on the shortest path to 71 seconds on the longest path were experienced.

(7) A general aviation type flight director system, modified simply by gain changes

in the conventional inputs and the addition of reference bank-angle and reference track

angle inputs during the turn, was found to be acceptable for steep descending and curved

flight-path steering.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., June 3, 1974.

20



APPENDIX

COMPUTER DETERMINATION OF FLIGHT-PATH DEVIATIONS

The. following scheme was used in the ground-based computer to determine which

leg of the approach the aircraft was on. From this knowledge, localizer and glide-slope

deviations and other information were calculated. All positions were in reference to a

Cartesian coordinate system originating at glide-slope center-line ground-plane intercept

and localizer center line. (See sketch (b).)

z

Center. y

x tRunway

Sketch (b)

The approach path was divided into segments. Each segment was either a straight
line or arc of a circle. Restrictions were:

(1) The flight path must not cross itself.

(2) No circular segment may exceed 900.

(3) Only one glide slope may be used.

Each segment of the ground trace was enclosed by a box whose sides were parallel to the
Cartesian coordinate system. As an example, a ground trace of a 1800 curved approach
(sketch (c)) is shown:

3 4

X. 2 Segment 1

Sketch (c)

If the radar location put the aircraft outside any block of a path, an invalid signal was
given. When the radar put the aircraft inside a block, it was necessary to determine
which block by surveying the block limits. When the specific block was determined, it was
then necessary to determine the aircraft position along and with respect to the desired
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APPENDIX A - Concluded

approach path. A perpendicular to the ground-path segment was drawn from the projec-

tion of the aircraft on the ground. This perpendicular distance was the localizer deviation.

The distance from the interception of the perpendicular with the ground-path segment

measured along the path to glide-slope origin (intercept with the ground) was then com-

puted. The glide-slope deviation was taken as the difference between the airplane height

and the calculated height of the 60 glide slope at the above computed distance from glide-

slope origin. The localizer and glide-slope deviations were expressed in terms of

localizer and glide-slope half-widths.
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TABLE I.- TWIN OTTER AIRPLANE CHARACTERISTICS

S19.80 m
(64.96 ft)

5.68 m

_ 15.76 m - -
(51.71 ft)

Maximum take-off weight, N .................... 55 603

W ing area, m 2  . . . . . . . .  . . . . . . . . . . . . . . . . . . .  39.02

Mean aerodynamic chord, m . .................. . 1.98

High lift devices .................... Double slotted flaps

STOL landing distance from 15.2 meters, m . ........... 320.04
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TABLE II.- CURVED APPROACH PATHS

Radius of final turn, Final approach distance, Turn Assumed Glide-slope height at
R d Turn MLS azimuth MLS azimuth boundary

angle, direction coverage,
m ft m ft deg deg m ft

1829 6000 914 3000, 180 Left ±60 655 2150
1829 6000 914 3000 180 Right ±60 655 2150
1829 6000 455 1500 135 LefRight ±60 555 1825
1829 6000 455 1500 135 Right ±60 555 1825
1220 4000 455 1500 90 Left ±60 560 1850
1220 4000 455 1500 90 Right ±60 560 1850

914 3000 2745 9000 180 Left ±40 720 2375
914 3000 2745 9000 180 Right ±40 720 2375
914 3000 914 3000 90 Left ±60 400 1300
914 3000 914 3000 90 Right ±60 400 1300
914 3000 914 3000 180 Left ±60 440 1450
914 3000 914 3000 180 Right ±60 440 1450
914 3000 455 1500 180 Left ±60 350 1150
914 3000 455 1500 180 Right ±60 350 1150
720 2400 2745 9000 135 Right ±60 605 1975
720 2400 1829 6000 90 Left ±40 510 1675
720 2400 1829 6000 90 Right ±40 510 1675
720 2400 1829 6000 180 Left ±40 495 1625
720 2400 1829 6000 180 Right ±40 495 1625
720 2400 914 3000 135 Left ±60 400 1300
720 2400 914 3000 135 Right ±60 400 1300
610 2000 914 3000 135 Left ±60 375 1225
610 2000 914 3000 135 Right ±60 375 1225
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Figure 1.- Guidance information and data recording systems.
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Figure 6.- Curved flight-path shapes and MLS azimuth coverage angles.
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42



20

Roll 10
rate, 0
deg/sec -10

-20

30

20

Pitch 10
attitude, 0

deg -10

-20

-30

30-

20

10
Bank
angle, O

-30

100

75 _ -- -- -.
Airspeed, 50
knots

25

0

400
Vertical
speed, 0
m/min 4

-400

4

Distance to
runway threshold, 2

n. mi.

Turn

Glide-slope acquisition

L I I i .jj _ _ ± -I

180 160 140 120 100 80 60 40 20 0

Time to 30.5-m altitude; sec

(b) Time histories of flight conditions.

Figure 9.- Continued.

43



0.5
Glide-slope
deviation, 0
i/2-beam height

-0.5

0.5

-1I0

1.0

pitch command 0
signal ve

-1.0

.5

Normalized

roll command 0
signal

.5

-1.0

20 V
10Reference

bank angle, 0
deg 1

-20

200
Reference
track angle, 100

deg I t Turn
Glide-slope acquisition

I I I I I I
180 160 140 120 100 80 60 40 20 0

Time to 30.5-m altitude, sec

(c) Time histories of flight director inputs and commands and
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Figure 9.- Concluded.
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Figure 10.- Time histories of flight director commands and glide-slope and

localizer deviations in a straight approach.
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Figure 11.- Approach time from turn entry to 30.5-m (100-ft) altitude for various wind

conditions and approach patterns. Target airspeed, 75 knots; 60 glide slope.
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Figure 12.- Maximum descent rates held for a minimum of 5 seconds for various wind
conditions and approach patterns. Target airspeed, 75 knots; -6o glide slope.
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Figure 13.- Maximum bank angles held for a minimum of 5 seconds for various wind

conditions and approach pattern. Target airspeed, 75 knots.
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Figure 14.- Maximum roll rates for various wind conditions and approach patterns.

Target airspeed, 75 knots.
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Figure 15.- Probability distribution of maximum incremental normal acceleration in

curved descending approaches. Turn radius 1220 m (4000 ft), or less, and final

approach distance 914 m (3000 ft), or less; 60 glide slope, 900, 1350, and 1800

turns. Wind velocities from 5 to 23 knots.
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Figure 16.- Localizer and glide-slope deviations at turn entrance and exit.
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Figure 16.- Concluded.
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