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Abstract
Ultracold hybrid ion–atom traps offer the possibility of microscopic manipulation of quantum
coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge
transfer can be a significant process of ion loss and has been measured experimentally for the

+Yb ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the
potential energy curves and dipole moments for the lowest-lying energy states of this complex.
Calculations for the radiative decay processes cross sections and rate coefficients are presented
for the total decay processes; ν+ → + ++ + hYb (6s S) Rb(5s S) Yb(6s S) Rb (4p S)2 2 2 1 6 1 and

Σ ν+ → ++ + +X hYb (6s S) Rb(5s S) YbRb ( )2 2 1 . Comparing the semi-classical Langevin
approximation with the quantum approach, we find it provides a very good estimate of the
background at higher energies. The results demonstrate that radiative decay mechanisms are
important over the energy and temperature region considered. In fact, the Langevin process of
ion–atom collisions dominates cold ion–atom collisions. For spin-dependent processes [1] the
anisotropic magnetic dipole–dipole interaction and the second-order spin–orbit coupling can play
important roles, inducing coupling between the spin and the orbital motion. They measured the
spin-relaxing collision rate to be approximately five orders of magnitude higher than the charge-
exchange collision rate [1]. Regarding the measured radiative charge transfer collision rate, we
find that our calculation is in very good agreement with experiment and with previous
calculations. Nonetheless, we find no broad resonances features that might underly a strong
isotope effect. In conclusion, we find, in agreement with previous theory that the isotope
anomaly observed in experiment remains an open question.

Keywords: ultracold, radiative charge transfer, cold collisions

(Some figures may appear in colour only in the online journal)

1. Introduction

Charge transfer processes in ion−atom collisions are tradi-
tionally measured experimentally by their cross-sections and
rate coefficient as a function of energy and temperature. For
ambient temperatures, one can treat the relative motion of the
ion and atom as a classical motion and focus on the quantum
dynamics of the electrons. However, at ultracold temperatures
the wave nature of the atomic motion is revealed. While the
electronic and nuclear motion can still be adiabatically
decoupled, the electronic and nuclear motions are strongly

correlated. Under these conditions, the chemical pathways
and scattering processes are highly sensitive to external fields
that perturb the electronic structure which in turn transfer this
effect coherently to the atomic motion. This means that the
reaction processes are sensitive to external electric and mag-
netic fields and thus amenable to experimental control, for
example by Feshbach resonances [2, 3]. Such effects are
extremely important in controlling coherence and correlation,
with applications in molecular quantum information protocols
and in hybrid quantum systems such as Coulomb crystals (ion
arrays) embedded in a quantum degenerate gas [4–6].

Journal of Physics B: Atomic, Molecular and Optical Physics

J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 145201 (10pp) doi:10.1088/0953-4075/47/14/145201

0953-4075/14/145201+10$33.00 © 2014 IOP Publishing Ltd Printed in the UK1

Made open access 05 January 2015

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

mailto:j.f.mccann@qub.ac.uk
http://dx.doi.org/10.1088/0953-4075/47/14/145201
http://creativecommons.org/licenses/by/3.0/


In this paper, we are concerned with one aspect of
ultracold ion–atom physics: the process of ion loss by charge
transfer. This is critical in terms of the ultracold regime as to
whether cooling, trapping and degeneracy can be achieved. It
is extremely important in view of potential applications such
as sympathetic ion cooling and micromotion minimization
[7]. Furthermore, it allows the study of the fundamental
process of ultracold charge transfer [8–10]. Quantum phe-
nomena can dominate reaction dynamics at low temperatures.
In such cold conditions the scattering process becomes sen-
sitive to the isotopes [11] for example when the resonances
are sharpened by tunnelling into long-lived metastable scat-
tering states.

Interest has developed in expanding the range of quan-
tum systems that can be trapped and manipulated on the
quantum scale. Hybrid ion–atom systems are of great interest
[12, 13] since these are inherently strongly-interacting sys-
tems with a longer-range potential, and inelastic processes can
be studied. Recently these systems have been explored con-
sidering two-body collisions, in which both collision partners
are translationally cold [14], and on the many-body level [15],
where the sympathetic cooling of the ion with ultracold atoms
was observed. The study of these systems in the quantum
regime can be applied to hybrid ion–atom devices [16] and, in
addressing fundamental many-body effects of ionic impurities
such as mesoscopic molecule formation [17] and density
fluctuations [18]. These devices offer a unique opportunity to
study reactive collisions (ultracold chemistry) [19] under
controlled conditions, for example when external electric
fields can be applied to modify the reaction rates/cross [15].
Unlike binary cold collisions between ground state neutral
atoms, which are only elastic or inelastic in nature, reactive
collisions (charge transfer) are a feature of Yb ions immersed
in a gas of trapped alkali atoms. Consequently there has been
increased interest in ultracold Yb-ion chemistry in the inter-
actions with alkalis [20] and its resonant charge transfer
process [21]. While non-adiabatic effects are strongly sup-
pressed as the temperature falls towards zero, nonetheless the
product Yb + +Rb is the thermodynamically favoured species
[22] and thus the loss process can occur by spontaneous
emission. It is this process that has received experimental and
theoretical attention recently and we continue to study in
detail in this paper.

Ultracold neutral atom interactions are characterized by
pure s-wave scattering mediated at long-range by the dis-
persion forces [23, 24]. Conversely, a bare ion creates a
strong polarization force and hence the effective cross section
is larger with significant contributions from higher-order
partial waves [25]. Indeed the usual effective range expansion
must be modified by logarithmic terms in the wavenumber
expansion [26]. In the last few years theoretical studies of
ultracold ion–atom collisions [27] included the investigation
of the occurrence of magnetic Feshbach resonances with a
view to examining the tunability of the ion–atom interaction

focusing on the specific −+Ca Na40 system [28, 29], and
calculations of the single-channel scattering properties of the

+Ba ion with the Rb neutral atom [30] which suggest the

possibility of sympathetic cooling of the barium ion by the
buffer gas of ultracold rubidium atoms with a considerable
efficiency.

In recent experiments [14, 15, 31], a single trapped ion of
+Yb174 in a Paul trap was immersed in a condensate of neutral

Rb87 atoms confined in a magneto-optical trap. A study of
charge transfer cross sections showed that the simple classical
Langevin model was inadequate to explain the reaction rates
[15]. However, very little is known about the microscopic
ultracold binary interactions between this ion and the rubi-
dium atom [4, 5].

The initial experimental study of the quantum coherence
of charge transfer [15] was analysed using schematic energy
curves as no accurate ab initio potentials existed. In particular,
the potential energy curves (PECs) and couplings are not
known with any accuracy. Thus the experimental study of the
quantum coherence of charge transfer [15] was based on
schematics of the energy curves. This prompted our in depth
investigations [22] to map the lowest adiabatic states and the
static properties of the molecular ion, in particular the turning
points, potential minima, and crossing points of the lowest
molecular energies. In addition to this, the dissociation
energies and molecular constants provide useful spectroscopic
data for dynamical investigations [32]. We have made a
preliminary estimation of the pseudo-potential which
approximates the ultracold interaction. This information is of
great importance for modelling ultracold charge transfer, and
in particular the quantum character of chemical reactivity and
thus develop insights into ultracold quantum controlled
chemistry [24], for example when external fields are applied
to influence the reaction rates and reaction channels [15]. Of
course, the presence of a bare charge in a dilute gas exposes
many-body physics features such as exciton and polariton
dynamics, which are also of great interest. It is also of great
interest for laser manipulation of the collision to prevent
losses through charge transfer or create translationally-cold
trapped molecular ions via photoassociation. Since these
processes are light-sensitive, then one can add an extra ele-
ment of coherent control by using a laser to manipulate these
processes [33, 34].

In the present study we investigate radiative decay
mechanisms, the charge-transfer process

ν

+ →

+ +

+

+

( ) ( )
( ) ( ) h

Yb 6s S Rb 5s S

Rb 4p S Yb 6s S , (1)

2 2

6 1 2 1

and the radiative association process

Σ ν+ → ++ + +( ) ( ) ( )X hYb 6s S Rb 5s S YbRb , (2)2 2 1

using an optical-potential method.

2. Electronic structure calculation

Following our recent work on this molecular system [22] we
extend those computations using a parallel version of the
MOLPRO [35] suite of ab initio quantum chemistry codes
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(release MOLPRO 2010.1) to perform all the molecular
structure calculations for this diatomic system +(Rb, Yb) . Low
lying PECs as a function of internuclear distance out to
R = 50 au are computed and in the present investigation we
extend our earlier work [22] to calculate the transition dipole

moments between the Σ+1,3 states. As in our previous work
we use an active two-electron model within a multi-reference
configuration interaction (MRCI) and a full-configuration
interaction (FCI) framework to calculate all the potentials.
Briefly, within the MRCI model, the PECs are calculated
using effective core potentials (ECP) to replace the non-
valence electrons (ECP68MDF for Yb, ECP36SDF for Rb),
as a basis set for each atom, which allows for scalar-relati-
vistic effects to be included explicitly. The scalar-relativistic
effects are included by adding the corresponding terms of the
Douglas–Kroll Hamiltonian to the one-electron integrals. To
model the valence electrons, we use an augmented-correla-
tion-consistent polarized valence basis set; aug-cc-pV6Z. We
note that the basis set used yielded values consistent with
those of Meyer and Bohn [36] for the neutral YbRb molecule.
To take account of short-range interactions we employed the
non-relativistic complete-active-space self consistent field
(CASSCF)/MRCI method [37, 38] available within the
MOLPRO [35] ab initio quantum chemistry suite of codes.
Figure 1 shows our adiabatic potential curves for this system
as a function of the internuclear separation R. We note that the
present quantum chemistry calculations and those of Sayfu-
tyarova et al [32] use a similar approach. In summary, both
calculations essentially use an effective core-potential and a
multi-reference CI to cater for electron-correlation in the outer
electrons. At short bond lengths all the results are obtained
from the state-averaged CASSCF/MRCI approach. Our
results are very similar to those obtained by Sayfutyarova
et al [32] who used a total of 22 correlated electrons (14

electrons in doubly occupied orbitals). These authors also

conducted CCSD(T) calculations on the Σ+X1 , Σ+a3 and Πb3

states over 30 electrons to refine these potentials further. The
effect of including extra electron correlation leads to a general
reduction in the equilibrium bond lengths, most significant in

the case of the Πb3 state, where the combination of the CCSD
(T) method and larger active electron calculation, predicts a
much deeper potential well than found in our present work.
However, this well nearly halved in size when spin-orbit
effects were included. The Yb polarizability determined from
the active two electron, MRCI and FCI potentials, is 128.5 au,
(within 8% of the currently accepted value 139 ± 7 [39]) but
smaller than the considerably more expensive CCSD(T) cal-
culations of Sayfutyarova et al [32] who obtained α = 142.2.
We note that both calculated values are within the experi-
mental limits.

In figure 2 we illustrate the two singlet states involved in
the radiative decay processes. The radiative charge transfer

occurs along the Σ+A1 state which has a shallow well.
Comparing our results with the equivalent MRCI potential of
Sayfutyarova et al [32] their results are in good agreement
with ours. For this well, our earlier work [22] found a dis-
sociation energy was =D 0.1085e eV with a bond length of

a14.36 0, compared to their calculations, where : =D 0.1037e

eV and =R a13.8139e 0. Although our excited state well is

slightly deeper, there are significant differences in the Σ+X1

ground-state. The dissociation energy of Sayfutyarova et al

[32] is −3496 cm 1 (0.4334 eV), almost twice the value of
Lamb and co-workers [22], who obtained a value of
0.2202 eV. We note also that the equilibrium distance Re also

Figure 1. Relative electronic energies for the diatomic molecular ion
+YbRb as a function of internuclear distance R(a )0 , (MRCI

approximation). The Σ+X1 ground state is the +Rb channel, while the
lowest energy ionic ytterbium states, the triplet Σ+a3 and singlet

Σ+A1 pair, are nearly degenerate with the excited charge-transfer
channels: + *+Rb Yb (see appendix for numerical values).

Figure 2. +YbRb potential energy curves (relative electronic energies)
as a function of internuclear distance R (a )0 , (MRCI approximation)

for the Σ+X1 and Σ+A1 states. The singlet Σ+A1 is the entrance
channel leading to the radiative charge-transfer channels: ++Rb Yb,
the lowest energy ionic ytterbium states. The Σ+X1 correlates for
large R with the +Rb ion. The loss process from state Σ+A1 can be
through radiative association into the bound rovibrational manifold
or above the dissociation threshold into the ion-atom charge
exchange.
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occurs at a shorter bond length of a8.088 0 [32], compared to
our finding which gave =R a9.031e 0 [22].

Figure 3 illustrates the dipole transition moment D
(R) (au) as a function of internuclear separation R for the
singlet and triplet Σ+ states. Results for the dipole matrix

elements between the Σ+X1
– Σ+A1 states and the Σ+a3

– Σ+23

states are illustrated. Comparing these results with the work of
Sayfutyarova et al [32] we find very good agreement quali-
tatively for the −A X moment, although it is not possible to
compare the triplet-triplet transition moment. Our results find
a very smooth −A X singlet dipole which leads us to con-
clude that the sensitivity to the dynamics will be due to the
wave function envelope. If there were some oscillatory
behaviour in figure 3, then one could anticipate that this might
be transferred to the radiative coupling. However, in the
absence of structures in the moment, the resonance behaviour
will be primarily potential scattering.

In figure 4 the transition rate calculated using
equation (13) is presented as a function of the internuclear
separation R. The decay rate Γ R( ) decreases exponentially as
R increases due to the exponential attenuation in the overlap
of the atomic wave functions corresponding to charge trans-

fer. Beyond R = 50 au, the potential of the Σ+A1 state can be
described by the long-range multipole expansion:

⎡
⎣⎢

⎤
⎦⎥

α
= +∞ − + +V R V

R

C

R

C

R
( ) ( )

1

2
, (3)A A

d
4

6
6

8
8

where αd is the dipole polarizability of the neutral atom and
where C6 and C8 are respectively the quadrupole and octupole
polarizabilities, which have been evaluated in our previous
study [22]. In our calculation of the phase shift we integrate
into the asymptotic regime using the multipole series for the
potential.

3. Theoretical method

In the simple classical model [40], the nuclear motion takes
place on the incoming potential surface, V R( )A . Thus the
motion is angular-momentum conserving, time-reversal
invariant, and elastic—to a first approximation. Defining the
collision energy, in the centre-of-mass frame, as E and the
reduced mass of the nuclei as μ, then we can take the zero of
potential energy at infinite separation in the incoming chan-
nel: +∞ =V ( ) 0A . Since angular momentum is conserved,
then for an impact parameter b, the radial velocity can be
written as:

⎛
⎝⎜

⎞
⎠⎟μ

= − −v R
E V R

E

b

R
( )

2
1

( )
. (4)R

A2
2

2

Thus the classical turning point will be the (largest) solution
of the equation:

= =( )R t

t
v R

d ( )

d
0. (5)R c

The process of spontaneous emission has a rate Γ R( ) which
drives the charge transfer process. Consider a classical tra-
jectory for a given collision energy, E, and impact parameter.
Then for the decay process, letting t = 0 denotes the classical
turning point where = ±∞t are the end points. One can write
for the probability of emission, for example as explained in
[40]:

⎛
⎝⎜

⎞
⎠⎟∫ Γ= − −

+∞
P b E

R

v R
R( , ) 1 exp 2

( )

( )
d . (6)

R Rc

Then to a good approximation, in the case of weak coupling,

Figure 3. Dipole transition moments (absolute value) | |D R( ) for the

Σ Σ↔+ +X A1 1 transition and the Σ Σ↔+ +a 23 3 states as a function of
internuclear distance R (a )0 . The multi-reference-configuration-
interaction (MRCI) approximation within the MOLPRO suite of
codes is used to calculate the transition dipole moments.

Figure 4. Einstein spontaneous emission transition rate Γ R( ) as a
function of internuclear distance R (a )0 . The radiative decay rate

Γ R( ) (units of 1010 −s 1), according to (13) is shown as a function of
internuclear distance R (a )0 , for the Σ Σ→+ +X A1 1 states and the

Σ Σ→+ +a 23 3 transitions.
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we have:

∫ Γ≈
+∞

P b E
R

v R
R( , ) 2

( )

( )
d . (7)

R Rc

Therefore, the semi-classical cross-section is simply,

∫σ π=
+∞

E bP E b b( ) 2 ( , ) d , (8)c
0

which leads to the expression [41]

∫
∫

σ π μ

Γ

=

×
− −

+∞

∞

E
E

b b

R R

V R E b R

( ) 2
2

d

( ) d

1 ( )
. (9)

c

R
A

0

2 2
c

At high energies, ≫E VA, the integrand in (9) is energy

independent and thus σ μ∼E E( ) ( / )1/2. So for the heavier

mass since we are considering the +Yb172 and +Yb174 isotopes
(ignoring any resonant behaviour) then on dynamical grounds
the cross-section is slightly higher. It is purely by coincidence
that this energy dependence matches the classical Langevin
model [42] for reactive collisions. For a long-range ion–atom
potential we have the polarization potential,

α= −V R R( ) /(2 )d
4 . In the Langevin model, if the centrifugal

barrier can be surmounted then the reaction proceeds with
certainty and the cross-section is given by the simple formula:

σ π
α

=
E

2
, (10)L

d

which displays the same energy dependence as (9) but based
on completely different physics.

Strictly speaking we have three quantum fields: the active
electron, the nuclear motion, and the photon. One can con-
struct the wavefunctions in the product (adiabatic) repre-
sentation and then couple these through the Hamiltonian
(including the vacuum photon states). However the process
involves a weak-coupling, the irreversible spontaneous
emission leading to charge transfer. Thus the collision of the

+Yb ion with the Rb atom leading to loss of the +Yb ion can be
considered as a second-order perturbation of the elastic
lossless collision. The modified optical potential will have an
imaginary (non-Hermitian) term proportional to the Einstein
coefficient. This ‘width’ depends on the dipole moment and
frequency of emission and is R-dependent. The optical
potential method, in the context of radiative charge transfer,
has been described in detail by Zygelman and Dalgarno [41].
We simply present the outline of the main equations and how
it is modified for our application.

In the adiabatic approximation the dynamics occur on
decoupled, centrally-symmetric PECs. The temperatures are
so low that all non-adiabatic radial and rotational coupling are
so weak that the vacuum coupling (by photoemission) is the
only non-elastic process. Radiative charge transfer requires
the optical dipole selection rules to be obeyed for transitions

to the Σ+1 state. Thus only the Σ+A1 state has an allowed
radiative charge transfer.

Using conventional notation, we use E to denote the
collision energy in the centre-of-mass frame, and with mi and
ma denoting the ion and atom masses, respectively, the
reduced mass is defined: μ = +m m m m/( )i a i a . Then the col-

lision wavenumber is denoted by μ=k E2 . Finally, all
potential energies are with respect to the asymptotic incoming
channel: +∞ =V ( ) 0A . This means that the physics is
essentially reduced to a single channel (effective complex
radial potential) scattering problem:

Γ→ −V R V R i R( ) ( )
1

2
( ). (11)A A

In the use of the simple optical potential we implicitly,
and approximately, take into account both the process of
radiative association and radiative transfer. That is the lower
(exothermic charge exchange) state has an (infinite) number
of bound (association) rovibrational levels and continuum
states. This point is discussed in detail in previous applica-
tions [27, 32] and its validity verified. In other terms, Γ ,
which is larger the higher the photon frequency, is taken as a
vertical transition in analogy to the way that the ‘reflection
principle’ is applied [43]. This approximation is better the
larger the mass of the colliding atoms/ions. The problem can
be summarized mathematically as [27] the solution of the
Schrödinger equation,

⎡
⎣⎢

⎤
⎦⎥μ

Γ

− ▽ + −

=

V R E F E

i R F E

R

R

1

2
( ) ( ; )

1

2
( ) ( ; ) , (12)

A A

A

R
2

where Γ R( ) is the Einstein spontaneous emission transition

rate for the decay Σ Σ→+ +A X1 1 . Again using atomic units,
we have that:

Γ = −R
D R

c
V R V R( )

4 ( )

3
( ) ( ) , (13)A X

2

3

3

where c is the speed of light, V R( )A and V R( )X are the adia-

batic potential energies of the upper A Σ+1 and ground (lower)

X Σ+1 states respectively. D(R) is the transition-moment

matrix element between the A Σ+1 and the X Σ+1 states. For

large R values the A Σ+1 state separates asymptotically into

the atomic states +Yb (6s S)2 and Rb (4p 5s S)6 2 , while the X

Σ+1 separates into Yb (6s S)21
and +Rb (4p S)6 1 . Thus, Γ R( ) is

short range and exponentially damped with increasing R since
it requires the electron to transfer from the atom to the ion. As
the potential is central, even though it is complex, the usual
separation in spherical coordinates applies, for example:

∑ χ= ˆ( )F E k R YR R( ; ) ( , ) . (14)A

J M
A J JM

,
,

J

J

We define the elastic-scattering wavenumber, k R( )A J, , for the
incoming channel A with angular momentum J, as follows:

μ= − − +k R k V R J J R( ) 2 ( ) ( 1) . (15)A J A,
2 2 2

Then, without fear of ambiguity, we define the collision
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wavenumber:

=
→∞

k klim . (16)
R

A J,

Then the corresponding radial functions,
χ=f k R kR k R( , ) ( , )

A J A J, ,
, will be the solutions of the

equations:

⎡
⎣⎢

⎤
⎦⎥+ =

R
k R f k R

d

d
( ) ( , ) 0, (17)A J A J

2

2 ,
2

,

normalized asymptotically ( → ∞R ) according to,

⎜ ⎟⎛
⎝

⎞
⎠

μ
π

π δ∼ − +f k R
k

kR J( , )
2

sin
1

2
(18)

A J J,

and δJ is the elastic phase shift. When the optical potential is
used the radial equations for the functions in (14) are the
same:

⎡
⎣⎢

⎤
⎦⎥κ χ+ =

R
R k R

d

d
( ) ( , ) 0, (19)A J A J

2

2 ,
2

,

apart from the modification for the complex wavenumber:

κ μΓ= −R k R i R( ) ( ) ( ). (20)A J A J,
2

,
2

Since the imaginary term is short-ranged, then
κ =→∞ R klim ( )R A J, and the normalization conventions for the

radial wavefunctions (18) are the same. However, χ k R( , )
A J,

have complex phase shifts [44] and thus the probability flux is
attenuated.

Naturally the vacuum emission represented by the width
Γ R( ) is much smaller in magnitude compared with the real
potential V R( )A and thus we can solve (19) by perturbation
theory. In the distorted-wave approximation the imaginary
part of the phaseshift (μ δ= Im

J J) is given by

∫μ π Γ=
+∞

k f k R R R( )
2

( , ) ( ) d . (21)
J
DW

A J
0

,

2

We solve the problem directly integrating (19) using the
Numerov method [45–47] and this is labelled the quantal
approximation to distinguish it from the distorted-wave cal-
culation and the semi-classical approximation discussed
above.

The cross section for total collision-induced radiative
decay from the entrance channel, the sum of the cross sections
forr processes (1) and (2) can be obtained within the optical
potential approximation. The cross section for collision-
induced radiative decay can then be written as,

⎡⎣ ⎤⎦∑σ π= + − μ

=

∞
−E

g

k
J( ) (2 1) 1 e . (22)

J
2

0

4 J

where k is given by (16), and g is the spin (statistical) weight.

Since the loss channel is via the Σ+X1 state, and as the Yb ion
and Rb atom combine to produce singlets, then only ion–atom
collisions with singlet symmetry have a dipole-allowed sponta-
neous emission. So in this case, the statistical weight is, =g 1/4.

At higher energy, a semi-classical approximation is
invoked to calculate the cross sections for radiative decay.

The summation over the angular momentum in equation (22)
can be replaced by an integral over the impact parameter, b,
according to ≈kb J . The JWKB approximation can then be
used to obtain the wave function,

⎛
⎝⎜

⎞
⎠⎟∫μ

π
π≈ ′ ′ +f k R

k R
k R R( , )

2

( )
sin ( ) d

1

4
. (23)

A J
A J R

R

A J,
,

,
c

This simplifies the calculation of the phase-shift,
equation (21) [41, 48, 49] since the rapidly varying integrand
gives us (in the classically allowed region):

μ π≈ ( )f k R k R( , ) / ( )
A J A J,
2

, . Then using (21) we get the semi-

classical approximation (9).
The thermally averaged rate coefficient α σ=T v( ) , as

a function of temperature T, is obtained by averaging over the
Maxwell–Boltzmann distribution. That is,

⎛
⎝⎜

⎞
⎠⎟ ∫α

μπ
σ=

∞
−T

k T
E E E( )

8
( ) e d . (24)( )

B

E k T
3 3

1 2

0

B

In the early work of Bates [49] an efficient and convenient
procedure to evaluate the rate coefficient was outlined. In the

present calculations for cross sections we start from −10 12 μeV
and extend these to higher energies, by invoking a semi-

classical approximation above about −10 2 eV up to 104 eV for
the transition of interest.

4. Results

4.1. Electronic states

Since the MRCI calculations do not explicitly include relati-
vistic effects, although this is not important for the entrance

collision channel or the lower Yb (1S) + +Rb ( S)1 asymptote as

all the molecular states formed are of Σ+ symmetry. This is
borne out by the calculated energy of the asymptotic energies

of the Σ+a3 and Σ+A1 states [22]. The asymptotes for the

higher Π3 and Σ+3 states correlate to the Yb (6s6p 3Po) + +Rb

(4p6 S)1 atomic products. The multiplet and its associated fine-

structure splitting in the triplet (Yb: 3Po
0,1,2) is considerable:

∼0.3 eV. Only a fully relativistic treatment can accurately
account for the spin–orbit interaction. In a magnetic trap of
course the Zeeman splitting and hyperfine structure compli-
cates matters further. Nonetheless, in our first analysis of this
novel system, we can confidently say that a curve crossing

will take place between the Σ+A1 and Πb3 states though at an

energy above the +Yb ( S)2 + Rb ( S)2 asymptote. Such a
crossing will facilitate a charge exchange reaction as observed
in experiment at mK temperatures [14, 15]. In our previous
work on this complex [22] we have estimated the molecular
constants for the four states that support bound rovibrational
states.
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4.2. Cross sections and collision rates

Cross sections were determined using the quantal optical
potential approximation, for collision energies ranging from

μ−10 12 eV up to 10 eV. At higher collision energies a semi-
classical approximation (equation (12)) was invoked for
energies up to 10 keV in order to determine the cross sections.

In order to compare with experiment the statistical weight
for the singlet, must be taken into account, this means taking

=g 1/4 in (22). The cross section results presented in
figures 5 and 6 for all the radiative decay process are the
spinless results, g = 1. In figure 5 we show the optical
potential results as they are mapped on to those obtained from
the semi-classical approximation. Figure 6 illustrates the low
partial-wave contributions to the total cross section in the
optical potential approximation. The solid line and dashed
line show the effect of the long-range interactions. The solid
line is the full multipole expansion, while the dashed line only
includes the quadrupole of polarization. At the higher ener-
gies, the corrections to leading-order polarization do not
affect the positions of the resonances. This confirms that the
resonance effect as short-range features, well described as
potential scattering. At the very lowest energies however, as
the wavelengths become extremely long and the centrifugal
barrier much more significant, then, as is well-known, the
long-range features of the potential take over. From these

results one clearly sees that at collision energies below μ−10 6

eV the cross section is totally dominated by s-wave scattering.
However, owing to the sensitivity of the scattering to the
potential, the estimation of the effective range parameters,
including the complex scattering length, would be of great
interest. So primarily, at intermediate energies the process is
dominated by the short-range classical turning point. This
may go some way to explaining why our dynamic results are
in such good agreement with the more complex calculations

of [32] although the agreement is surprising. Note, at higher
energies non-adiabatic effects will naturally become more
important, however, in this energy (temperature) range, the
role of non-adiabatic coupling (radial and rotational) turns out
to have very little importance indeed. Their influence is
negligible for the radiative capture process, as has been
shown recently in detailed studies by Sayfutyarova et al [32].

Finally, we consider whether thermal effects might be
taken into account, to confirm the discrepancy between theory
and experiment. In the experiments by Köhl et al [14, 15] the
kinetic energy of a single +Yb ion immersed in an ultracold Rb
ensemble was varied by adding excess micromotion energy
after displacement of an ion from the centre of a trap. The
binary-collision ion-loss rate coefficient determined in this way
does not correspond to a conventional thermally-averaged rate
constant for the Maxwell collision energy distribution at a
certain temperature which assumes thermal equilibrium. The
relationship σv is therefore used to designate an effective
energy-dependent rate coefficient [32], where R E( ) is given by,

μ σ= →R E E E( ) 2 ( ). (25)A X
R

We use this form to define a quasi-rate coefficient [24] rather
than one averaged over a Maxwellian distribution defined in
equation (24). In figure 7 we compare our calculations with
experiment for this quasi-rate parameter R. The measured
experimental value for the +Yb174 isotope [14] shown in
figure 7 indicate that the magnitude of R(E) is

± × −(4.0 0.3) 10 14 −cm s3 1, where as the calculations of Say-
futyarova et al [32] for this isotope give a value, after averaging
the cross sections in the energy region 0.15–3.25 −cm 1, through

the savannah of resonances, a value of × −2.9 10 14 −cm s3 1,
which is just outside the experimental error. Carrying out a
similar procedure with our cross sections results (solid black

Figure 5. Cross sections for the total collision-induced radiative
decay at low energies (1) for ++Yb Rb174 . The quantal optical
potential calculations (22) are compared with the semi-classical
approximation. In the figure we present the spinless cross sections,
that is g = 1. The background of the quantal result (22) follows the
semi-classical approximation (9) at collision energies above μeV and
has the asymptotic −E 1/2 behaviour.

Figure 6. Partial cross sections for radiative charge transfer and
radiative association for the sum of reactions (1) and (2) as a function of
relative collision energy for the Yb174 isotope. The contribution of each
partial wave is shown, and illustrates the sharp potential resonances
which are tuned by the centrifugal barrier. The solid line and dashed
line show the effect of different long-range interactions. Referring to
(3), the solid line is the full multipole expansion, while the dashed line
only includes the dipole term, that is = =C C 06 8 . Again, in this case
we present the spinless partial cross section, equation (22), with g = 1.
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line, figure 7) yields a mean value slightly higher, in better
agreement with experiment, but relatively close in magnitude to

previous work [32]. For the +Yb174 isotope we obtained a value

of ≈ × −R E( ) 2.76 10 14 −cm s3 1. Similarly, for the isotope
+Yb172 , (after averaging through the resonances features, dashed

black line, figure 7) we obtained a value≈ × −2.68 10 14 −cm s3 1,
once again close to the results of Sayfutyarova et al [32].
Experimental studies show there is a large isotope shift, as

measurements indicate a value of R(E) for the +Yb172 isotope of

± × −(2.8 0.3) 10 14 −cm s3 1 [14] with the ratio ≈R R/ 1.4174 172 .
As found in previous studies [32] our theoretical predictions for
this same ratio give a value of ≈1.03 indicating to the contrary.

Regarding the large isotope sensitivity, we do not
observe as great a difference as reported in experimental
measurements. Similar to the detailed calculations of Sayfu-
tyarova et al [32] we find a dense forest of resonances, but no
broad features that would lead to a strong isotope dependency
as observed in the experiment. So, our conclusion is that this
feature remains unexplained. It is possible to speculate that
the experimental conditions, having the magnetic field pre-
sent, create additional complications. For example the nuclear
spin of the Yb ion. It is known from recent experiments that
this has an important role in relaxation phenomena [1]. Fur-
ther detailed theoretical studies and additional experiments
would be essential in order to resolve this issue.

We note for +YbCa ultra-cold collisions [27] it is only at

temperatures below a nano-Kelvin ( −10 6 K) that a large iso-
tope effect is seen. Above these temperatures there is a very
small isotope effect. In the present work on +YbRb , the

energy range is 0.15–3.25 −cm 1 (0.215–4.676 Kelvin), so a
similar small isotope effect is seen as in +YbCa [27].

5. Conclusions

We have investigated the quantum nature of ultracold ion–atom
collisions and calculated the relevant experimental processes—
cross sections and rate coefficients for the different isotopes of

+Yb ion. These calculations are important in the design and
interpretation of the new generation of experiments involving
ultracold ion–atom systems. PECs and transition dipole
moments obtained from the MOLPRO suite of codes for low-
lying molecular states of the diatomic molecular ionic system
containing a ytterbium ion and a rubidium atom, with relevance
to ultra-cold chemistry were used in our dynamical calculations.
Cross sections as a function of energy, for the radiative decay,
charge transfer and association processes involving Yb ions and
Rb atoms are determined using an optical potential method. The
MRCI approach is used to determine turning points, crossing
points, potential minima and spectroscopic molecular constants
for the lowest five molecular states. The long-range parameters,
including the dispersion coefficients estimated from our
ab initio data were used in our dynamical investigations. Quasi-
energy dependent rate coefficients are determined from our
cross section for the radiative decay processes in ultracold
collisions of a ytterbium ion and a rubidium atom based on our
ab initio data and compared with the available experimental
measurements and previous theoretical work [32]. The agree-
ment is surprisingly good for the molecular electronic structure
that gives rise to the complex optical potential. The smooth
nature of the optical potential and validity of the semi-classical
approximation indicates that one can accurately estimate the
cross section with an elementary quadrature. The more complex
quantal treatment, while exhibiting the expected potential
resonances, does not give rise to a strong isotope effect, at least
in the energy range we investigated. The estimates of the energy
dependent collision rate are in suitable agreement with experi-
ment [14, 15] and with previous theoretical studies [32]. We
find no broad resonances features that might underly a strong
isotope effect. In conclusion, we find, in agreement with pre-
vious theoretical work [32] that the isotope anomaly observed
in experimental studies remains unexplained.
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Figure 7. The energy-dependent effective rate R E( ) ( −cm s3 1) = σv ,
defined in (25), compared with the available experimental data on
the two different isotopes of the +Yb ion, (solid blue triangle +Yb172 ,
solid red circle +Yb174 ). Mean theoretical values are shown from the
present optical potential calculations for the two different isotopes of
the Yb+ ion. The solid black line is the average through the
resonances for the case of the +Yb174 isotope, the dashed line that for
the +Yb172 isotope. Although theory shows suitable agreement with
the experimental measurements, the strong isotope sensitivity
observed in the experiment is not evident in the present calculations.
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YbRb+ MRCI potentials and dipole moments

Table A1. Energies for the lowest five states of the +YbRb cation and the magnitude of the transition dipole moments μ| | (all values in atomic
units) between the Σ+1,3 states. Calculations were performed at the multi-reference-configuration-interaction (MRCI) level as a function of
internuclear separation R (a0 ) with the MOLPRO suite of codes [35], see text for details. The potential energy curves (PECs) are calculated
using an effective core potentials (ECP) to replace the non-valence electrons (ECP68MDF for Yb, ECP36SDF for Rb) and an AV6Z basis for
the outer electrons.

R(a0) Σ+X1 Σ+A1 Σ+a3 Σ+23 Πb3 μ Σ Σ←+ +,
X A1 1 μ Σ Σ←+ +,

a 23 3

3.0 − 0.32382167 −0.18056641 −0.22685070 −0.13830772 −0.23369659 2.77538976E + 00 3.14573472
3.5 − 0.40254912 −0.26228838 −0.30820703 −0.22197268 −0.31847629 2.78930438E + 00 3.18660134
4.0 − 0.46032058 −0.32219208 −0.36780910 −0.28305587 −0.38021812 2.79840138E + 00 3.22631386
4.5 − 0.50698122 −0.37077020 −0.41545887 −0.33254144 −0.42766881 2.82154025E +00 3.27548581
5.0 − 0.54556668 −0.41162076 −0.45527239 −0.37539631 −0.46478422 2.85647641E+ 00 3.31650415
5.5 − 0.57635600 −0.44539034 −0.48851320 −0.41236776 −0.49339932 2.88180744E + 00 3.33737913
6.0 − 0.59936584 −0.47200281 −0.51535252 −0.44216198 −0.51463657 2.89339159E + 00 3.35410838
6.5 −0.61530769 −0.49190959 −0.53595262 −0.46446248 −0.52956862 2.89862641E + 00 3.38211334
7.0 −0.62556300 −0.50637097 −0.55101842 −0.48054432 −0.53947088 2.90026933E + 00 3.43126163
7.5 −0.63170310 −0.51696730 −0.56165122 −0.49223745 −0.54569486 2.89332163E + 00 3.50223695
8.0 −0.63506849 −0.52507544 −0.56893750 −0.50108003 −0.54941361 2.87174916E + 00 3.59210829
8.5 −0.63663599 −0.53164742 −0.57374404 −0.50810491 −0.55150557 2.83406169E + 00 3.69858005
9.0 −0.63707106 −0.53721379 −0.57671392 −0.51394276 −0.55257977 2.78292776E + 00 3.82000620
9.5 −0.63682035 −0.54200285 −0.57832056 −0.51896732 −0.55304467 2.72098159E + 00 3.95539621
10.0 −0.63618486 −0.54608639 −0.57891704 −0.52339749 −0.55316881 2.64796384E + 00 4.10437100
11.0 −0.63449906 −0.55222523 −0.57808634 −0.53091970 −0.55301220 2.45740465E + 00 4.44339547
12.0 −0.63290464 −0.55591942 −0.57570186 −0.53698444 −0.55279144 2.19636550E + 00 4.83663826
13.0 −0.63168317 −0.55771850 −0.57265590 −0.54178475 −0.55267624 1.87938443E + 00 5.28052502
14.0 −0.63083565 −0.55826383 −0.56949338 −0.54548429 −0.55265948 1.54260849E + 00 5.76703935
15.0 −0.63027159 −0.55810404 −0.56653201 −0.54826080 −0.55270028 1.22153841E + 00 6.28713063
16.0 −0.62989719 −0.55762152 −0.56392949 −0.55029189 −0.55276659 9.38646894E − 01 6.83305805
17.0 −0.62964301 −0.55704497 −0.56173872 −0.55173950 −0.55284007 7.03010256E − 01 7.39830456
18.0 −0.62946444 −0.55649325 −0.55995322 −0.55274269 −0.55291181 5.14825073E − 01 7.97609013
19.0 −0.62933454 −0.55601681 −0.55853607 −0.55341611 −0.55297811 3.69225621E − 01 8.55803409
20.0 −0.62923721 −0.55562762 −0.55743586 −0.55385114 −0.55303782 2.60513473E − 01 9.13946304
21.0 −0.62916259 −0.55531895 −0.55659649 −0.55411837 −0.55309091 1.81066506E − 01 9.71503237
22.0 −0.62910436 −0.55507720 −0.55596395 −0.55427057 −0.55313784 1.24246627E − 01 10.28412960
23.0 −0.62905827 −0.55488807 −0.55549067 −0.55434598 −0.55317921 8.42909856E − 02 10.85084727
24.0 −0.62902137 −0.55473920 −0.55513739 −0.55437148 −0.55321565 5.66083918E − 02 11.42134629
25.0 −0.62899152 −0.55462086 −0.55487342 −0.55436535 −0.55324775 3.76692214E − 02 11.98876546
26.0 −0.62896717 −0.55452571 −0.55467596 −0.55433935 −0.55327608 2.48540266E − 02 12.46999337
27.0 −0.62894713 −0.55444834 −0.55452916 −0.55430013 −0.55330112 1.62676499E − 02 12.51192229
28.0 −0.62893053 −0.55438476 −0.55442250 −0.55425082 −0.55332327 1.05572203E − 02 11.29536440
29.0 −0.62891668 −0.55433202 −0.55434731 −0.55419427 −0.55334293 6.80540314E − 03 8.50476276
30.0 −0.62890504 −0.55428792 −0.55429362 −0.55413588 −0.55336041 4.35528758E − 03 5.49589293
31.0 −0.62889521 −0.55425076 −0.55425284 −0.55408066 −0.55337599 2.76768243E − 03 3.32888059
32.0 −0.62888686 −0.55421927 −0.55422002 −0.55403074 −0.55338993 1.74670931E − 03 1.98772267
33.0 −0.62887973 −0.55419241 −0.55419268 −0.55398638 −0.55340241 1.09489525E − 03 1.18859254
34.0 −0.62887360 −0.55416939 −0.55416949 −0.55394711 −0.55341363 6.81718585E − 04 0.71360777
35.0 −0.62886832 −0.55414956 −0.55414959 −0.55391234 −0.55342373 4.21603382E − 04 0.42971578
36.0 −0.62886375 −0.55413240 −0.55413241 −0.55388147 −0.55343285 2.58956635E − 04 0.25907031
37.0 −0.62885977 −0.55411748 −0.55411749 −0.55385398 −0.55344111 1.57915736E − 04 0.15609902
38.0 −0.62885630 −0.55410448 −0.55410448 −0.55382943 −0.55344860 9.56016471E − 05 0.09385741
39.0 −0.62885325 −0.55409310 −0.55409310 −0.55380743 −0.55345541 5.74329870E − 05 0.05623899
40.0 −0.62885058 −0.55408310 −0.55408310 −0.55378765 −0.55346161 3.42271192E − 05 0.03354626
42.0 −0.62884612 −0.55406649 −0.55406649 −0.55375374 −0.55347244 1.18506542E − 05 0.01173501
44.0 −0.62884262 −0.55405342 −0.55405342 −0.55372591 −0.55348154 3.95589429E − 06 0.00399752
46.0 −0.62883983 −0.55404304 −0.55404304 −0.55370287 −0.55348922 1.27549229E − 06 0.00132327
48.0 −0.62883758 −0.55403469 −0.55403469 −0.55368363 −0.55349576 3.93135974E − 07 0.00042512
50.0 −0.62883576 −0.55402793 −0.55402793 −0.55366744 −0.55350136 1.16661070E − 07 0.00013179
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