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Abstract

Using the N-body simulations of the AEMULUSProject, we construct an emulator for the nonlinear clustering of
galaxies in real and redshift space. We construct our model of galaxy bias using the halo occupation framework,
accounting for possible velocity bias. The model includes 15 parameters, including both cosmological and galaxy
bias parameters. We demonstrate that our emulator achieves ∼1% precision at the scales of interest, 0.1h−1 Mpc
<r<10 h−1 Mpc, and recovers the true cosmology when tested against independent simulations. Our primary
parameters of interest are related to the growth rate of structure, f, and its degenerate combination, fσ8. Using this
emulator, we show that the constraining power on these parameters monotonically increases as smaller scales are
included in the analysis, all the way down to 0.1 h−1 Mpc. For a BOSS-like survey, the constraints on fσ8 from
r<30 h−1 Mpc scales alone are nearly a factor of two tighter than those from the fiducial BOSS analysis of
redshift-space clustering using perturbation theory at larger scales. The combination of real- and redshift-space
clustering allows us to break the degeneracy between f and σ8, yielding an 11% constraint on f alone for a BOSS-
like analysis. The current AEMULUSsimulations limit this model to surveys of massive galaxies. Future
simulations will allow this framework to be extended to all galaxy target types, including emission-line galaxies.

Key words: large-scale structure of universe – methods: numerical – methods: statistical

1. Introduction

The spatial distribution of luminous matter is one of the key
windows to understanding the distribution and properties of the
energy density of the universe. As galaxy clustering has
emerged as an essential tool in our effort to understand the
accelerated expansion of the universe, the amount of data from
galaxy redshift surveys has increased by orders of magnitude
over the past decade. Groundbreaking results from the first
truly large-scale redshift surveys, the Sloan Digital Sky Survey
(SDSS-I/II; York et al. 2000; Abazajian et al. 2009) and the
Two Degree Field Galaxy Redshift Survey (2dFGRS; Colless
et al. 2001; Cole et al. 2005), have spawned successor
programs such as BOSS (Dawson et al. 2013), eBOSS
(Dawson et al. 2016), and WiggleZ (Drinkwater et al. 2010),
which are either complete or in progress. Near-term surveys
such as the Dark Energy Spectroscopic Instrument (DESI;
DESI Collaboration et al. 2016), 4MOST (de Jong et al. 2016),
and PFS (Takada et al. 2014) will represent another leap in our
ability to create maps of the universe. With the current and
near-future surveys, we expect to have taken tens of millions of
spectra as a community, covering the last 10 billion yr of the
history of the universe. In this paper, we propose a new method
to make more efficient use of these spectra and increase the
constraining power of these data sets. We will demonstrate that
incorporating clustering information at nonlinear scales can
more than double the power of these data to constrain the
growth of structure.

Most of the applications of these data sets have focused on
the retrieval of cosmological information from large scales. The
appearance of the baryon acoustic peak at ∼100 h−1 Mpc

allows galaxy clustering to be used as a standard ruler in
geometric probes of the expansion history of the universe, but
the detailed shape and amplitude of the measured correlation
function also contain significant information. The amplification
of clustering through galaxy peculiar velocities—an effect
called redshift-space distortions (RSDs)—has become the
primary method for measuring the growth of structure using
spectroscopic surveys. Such measurements are complementary
to geometric probes of the universe because they are less
sensitive to variations in the equation of state of dark energy
and more sensitive to possible variations in the underlying
theory of gravity. Both theories have been proposed to explain
the accelerated expansion, but as yet we do not have the data to
determine which class of theories is correct.
The design of current and future surveys is built around the

rule of thumb nP≈1, where n is the space density of the
targets and P is the amplitude of the power spectrum in the
region of interest (DESI Collaboration et al. 2016). Adhering to
this rule creates a survey that is not shot noise–limited but
maximizes volume by limiting the sampling of the density field
with a fixed budget of observing time. However, in such survey
designs, typical clustering measurements are most precise at the
Mpc scale. This is far below the minimum scale considered for
analyses of the shape of clustering measurements or the impact
of RSD. These analyses are based on variations of higher-order
perturbation theory and usually model clustering at scales down
to 30–40Mpc (e.g., Carlson et al. 2009, 2013).
Retrieving information from these scales has been a goal of

modern cosmology, but it has also been a challenge (Kwan
et al. 2015). Nonlinear dynamics of dark matter are captured
with excellent precision in modern cosmological N-body
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simulations (see, e.g., Klypin et al. 2011, 2016). The challenge
of constraining cosmology with such simulations is twofold:
(1) an accurate and flexible model of the galaxy bias is
required, and (2) one needs to be able to properly sample
cosmological parameter space, which becomes computationally
intractable for a standard Monte Carlo Markov chain (MCMC)
analysis. Because of these limitations, the amount of informa-
tion that is extractable from small-scale galaxy clustering is
simply unknown. The measurement precision of the data is
orders of magnitude higher than at large scales, but the
theoretical complexity increases significantly. How much
information is recoverable after accounting for all possibilities
in galaxy bias? In this paper, for the case of RSD, we will show
that after marginalizing over numerous galaxy bias parameters
and incorporating the theoretical uncertainty in the galaxy
clustering model, it is still possible to extract more constraining
power from the growth of structure measurements than what is
achievable using perturbation theory on large scales.

To solve problem (1), we use the halo occupation
distribution (HOD; Benson et al. 2000; Peacock & Smith
2000; Seljak 2000; White et al. 2001; Berlind & Weinberg
2002; Cooray & Sheth 2002). The HOD approaches galaxy
bias by quantifying the statistical relationship between galaxies
and dark matter halos. In its most basic form, the HOD is
mostly determined by the probability distribution ( ∣P N M), the
probability that a halo of mass M contains N galaxies of a given
class. Once ( ∣ )P N M is combined with prescriptions for the
spatial and velocity bias of galaxies within halos, this model
offers a nearly complete description of the spatial distribution
of galaxies for a given halo population. This simple approach
of ( ∣ )P N M , however, ignores the possibility that N may depend
on some secondary halo property. If this halo property is
correlated with the spatial distribution of halos, this could
create a “galaxy secondary bias” (also known as galaxy
assembly bias) that would have to be incorporated in the
probability distribution in order to create a fully descriptive
HOD (Sheth & Tormen 2004; Gao et al. 2005; Harker et al.
2006; Wechsler et al. 2006). The optimal method for
incorporating galaxy assembly bias into the HOD and tests
against models that contain these effects is left to another paper
(S. McLaughlin et al. 2018, in preparation). Our emphasis here
is on determining the total constraining power and the scales
from which these constraints come, under the assumption that
the assumed HOD approach is sufficient for modeling
galaxy bias.

To solve problem (2), we use a combination of novel space-
filling algorithms and statistical techniques to create an
emulator for galaxy clustering. Our approach follows from
the work of Heitmann et al. (2009, 2010), Lawrence et al.
(2010), and Heitmann et al. (2014), who created an emulator
for the nonlinear matter power spectrum. Although full
coverage of parameter space with simulations is infeasible,
advancements in computing technology and force-calculation
algorithms have pushed the field to a state where suites of
simulations can be produced and analyzed in a tractable
amount of time. If parameter space is properly sampled, novel
interpolation schemes can be used to create high-accuracy
estimates of statistics at any point within the space. The
simulations and the parameter space spanned by the emulator in
this paper are described in detail in DeRose et al. (2018). These
simulations and their application constitute the AEMULUSPro-
ject. Use of these simulations to emulate the halo mass function

is presented in McClintock et al. (2019). The goals of the
AEMULUSProject are not limited to these statistics; these
papers are the first step toward a full accounting of the
extractable information from small-scale galaxy clustering,
including higher-order statistics, void statistics, galaxy–galaxy
lensing, and numerous combinations of galaxies with clusters.
Our goal in this paper is to construct an emulator that

achieves 1% accuracy in its prediction of the real-space
correlation function and the monopole and quadrupole of the
redshift-space correlation function over the scales 1h−1Mpc
r10 h−1 Mpc. Motivated by both the mass resolution of
the AEMULUSsimulations and the massive amount of data on
massive galaxies, we construct our emulator to model the class
of galaxies known as luminous red galaxies (LRGs). Compiling
the data from the completed SDSS-I/II and BOSS surveys, as
well as the ongoing eBOSS survey, yields nearly two million
spectra sampling a volume of nearly 10 Gpc3 (Dawson et al.
2016). This is the ideal target sample to begin the exploration
of the constraining power of small-scale clustering. In a pilot
study, Reid et al. (2014) used simulations of a single
cosmology to analyze small-scale RSD measurements. Their
analysis yielded a constraint on the growth of structure—
through the parameter combination fσ8—of 2.5%, a factor of
four smaller than analyses using large-scale measurements
combined with perturbation theory. In this paper, we take the
next step forward in this analysis, expanding both the
cosmological parameter space and the halo occupation
parameter space to produce a robust model with which to
analyze massive galaxy data sets.
Our paper is organized as follows. In Section 2, we introduce

the method of the emulator and a trial application to the
correlation function calculated with analytical methods in real
space. Section 3 presents the emulator for the correlation
function measured from N-body simulations and the perfor-
mance. Section 4 shows that we can achieve unbiased recovery
of cosmological parameters with the emulator and explores the
constraining power of small-scale clustering. We discuss and
list our conclusions in Section 5.

2. Constructing the Emulator

Here we discuss the observables, cosmological parameter
space, HOD parameter space, and implementation of the
Gaussian process (GP) emulator. We first test this process by
building an emulator around an analytical model for one of our
observables, the projected two-point galaxy correlation func-
tion wp(rp). For this statistic, there is a robust analytic model for
nonlinear galaxy clustering using halo occupation as the galaxy
bias model. Here we use the specific implementation described
in Tinker et al. (2005, 2012). This model is accurate to 5%–

10%, but the accuracy of the model is less relevant than its role
as a means by which to test the accuracy of our emulator given
the sampling of parameter space, the expected error of our
training sample simulations, and the GP itself.

2.1. Galaxy Clustering: The Observables

The clustering property of the galaxies can be characterized
by the two-point correlation function ξ(r), which is defined as a
measure of the excess probability, relative to a Poisson
distribution, of finding two galaxies at the volume elements
dV1 and dV2 separated by a vector distance r (Peebles 1980):

x= +[ ( )] ( )dP n r dV dV1 , 112
2

1 2

2
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where n is the mean number density over the whole sample
volume. For a pair of galaxies with redshift-space positions s1

and s2, the dependence of the correlation function is only
through s=s1−s2 and the orientation of s relative to the line
of sight.7 In this case, we may calculate the correlation function
of a two-dimensional grid of separations perpendicular (rp) and
parallel (π) to the line of sight ξZ(rp, π) through

p p= = -
·

∣ ∣
· ( )s l

l
s sr, , 2p

2

with l=(s1+ s2)/2 (Davis & Peebles 1983; Fisher et al.
1994).
In order to mitigate the effect of RSDs and examine the real-

space correlation function, we compute the projected correla-
tion function from ξ(rp, π) (Davis & Peebles 1983):

ò òpx p px p= = = +
¥ ¥

( ) ( ) ( )

( )

w r d r d r r2 , 2 .

3

p p Z p R p
0 0

2 2

We truncate the integrand to πmax=80 h−1 Mpc, which is
large enough to include most of the correlated pairs. The
projected correlation function eliminates the effect of RSD at
all scales rp<10 h−1 Mpc. Coherent inflows can change the
amplitude of the wp at larger scales when πmax is finite, but in
our analytic method, we account for this using the linear theory
of Kaiser (1987). In subsequent calculation based on simula-
tions, any impact of finite πmax is already built in to the same
result.

Equivalently, we can also write ξZ( )s s,1 2 as ξZ(s, μ), where
μ=rp/s. We can then expand the correlation function in
harmonics of μ for a given s, and the resulting Legendre
multipoles ξℓ(s) are given by

òx m x m m=
+

-
( ) ( ) ( ) ( )s

ℓ
L s d

2 1

2
, , 4ℓ ℓ Z

1

1

where Lℓ is the Legendre polynomial of order ℓ.

2.2. Cosmological Parameter Space

In our analytic calculation, we apply the spatially flat ΛCDM
model with the following parameters: matter density Ωm,
baryon density Ωb, Hubble constant
º - - -( )h H 100 km s Mpc0

1 1 1, spectral index of the primordial
perturbation ns, and perturbation amplitude σ8. In the
simulation-based emulator, we consider a flat wCDM with
the following additional parameters: the constant equation of
state of dark energy w0 and the number of relativistic species
Neff. We note that these parameters have minimal impact on the
small-scale spatial clustering of galaxies. The final parameter
used in the simulation-based emulator is γf, the amplitude of
the halo velocity field relative to the wCDM + general
relativity (GR) prediction. The growth rate of the structure is
the logarithmic derivative of the growth factor, D, with
=f d D d aln ln . Thus, f determines the amplitude of the

matter velocity field, which in turn is a product of the matter
density and theory of gravity. Our parameter γf is defined as
f/fwCDM, and all halo velocities are rescaled by this value.8

Therefore, γf is a test of gravity: within the cosmological
parameter space allowed by the cosmic microwave background
(CMB) and geometric constraints, can the data be fit with a
model where γf is consistent with unity?
The emulator is based on an efficient parameter sampling

strategy and an effective interpolation scheme. The former is
realized by a Latin hypercube method as introduced in
Heitmann et al. (2009), while the latter uses a GP. As
mentioned in the Introduction, we first build the emulator with
the analytic method, which can provide a thorough estimate of
the error and its dependence on scale and location in parameter
space. We calculate the matter power spectrum from Eisenstein
& Hu (1998) and ignore the effect from the equation of state of
dark energy and extra relativistic species. This results in a five-
dimensional cosmological model with parameters Ωm, Ωb, ns,
σ8, and h. The 40 training cosmologies for the analytic
emulator, as well as seven test cosmologies, are shown in

Table 1
The Parameters Used in Our Emulator, Their Physical Meaning, and the Range in the Parameter Space

Parameter Meaning Range

Cosmology Ωm The matter energy density [0.255, 0.353]
Ωb The baryon energy density [0.039, 0.062]
σ8 The amplitude of matter fluctuations on 8 h−1 Mpc scales [0.575, 0.964]
h The dimensionless Hubble constant [0.612, 0.748]
ns The spectral index of the primordial power spectrum [0.928, 0.997]
wa The dark energy equation of state [−1.40, −0.57]
Neff

a The number of relativistic species [2.62, 4.28]
γf
a The amplitude of the halo velocity field relative to wCDM+GR [0.5, 1.5]

HOD Mlog sat The typical mass scale for halos to host one satellite [13.8, 14.5]
α The power-law index for the mass dependence of the number of satellites [0.2, 1.8]
Mlog cut The mass cutoff scale for the satellite occupation function [10.0, 13.7]

s Mlog The scatter of halo mass at fixed galaxy luminosity [0.05, 0.6]
ηcon

a The concentration of satellites relative the dark matter halo [0.2, 2.0]
ηvc

a The velocity bias for central galaxies [0.0, 0.7]
ηvs

a The velocity bias for satellite galaxies [0.2, 2.0]

Note.
a This parameter is not used in the emulator of wp with the analytic method.

7 We differentiate the correlation function in real and redshift space as ξR and
ξZ, respectively.

8 In Reid et al. (2014), γf was labeled γHV.
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Figure 3 of DeRose et al. (2018). The details of the design of
the cosmologies can be found in their Table 1. The ranges of
the HOD parameters used in this paper are summarized in
Table 1.

2.3. Halo Occupation Parameter Space

In this paper, we apply the HOD framework, which
approaches the problem of galaxy bias in a statistical way. In
its most basic form, the HOD constructs a probability
distribution ( ∣ )P N M : the probability that a halo of mass M
contains N galaxies of a given class. Because the clustering,
abundance, and interior structure of dark matter halos is well
known from simulations, specifying ( ∣ )P N M provides a
complete description of the spatial distribution of galaxies.
This description is only complete if N depends only on halo
mass M. If N depends on some secondary halo property, and
this halo property depends on the spatial distribution of the
halos, this could create a “galaxy assembly bias” that would
have to be incorporated into the HOD model to be fully
descriptive. We leave this to another paper (S. McLaughlin
et al. 2018, in preparation).

For the HOD parameterization, it is necessary to separate the
contribution of the central galaxies from that of the satellite
galaxies with the mean occupancy of halos:

á ñ = á ñ = á ñ + á ñ( ) ( ) ( ) ( ) ( )N M N M N M N M . 5gal cen sat

The mean number of central galaxies in each halo is modeled
with a smooth transition between zero and one galaxy,

s
= +

-⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( )N M

M M1

2
1 erf

log log
, 6

M
cen

10 10 min

log

and the mean number of satellite galaxies is parameterized as

= -
a

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( ) ( ) ( )N M

M

M

M

M
N Mexp . 7sat

sat

cut
cen

The numbers of central and satellite galaxies in the population
are drawn from Bernoulli and Poisson distributions, respec-
tively. This HOD model has been applied widely in the study
of galaxy clustering as first proposed in Zheng et al. (2005).
Multiplying the central galaxy occupation function into the
satellite occupation function guarantees that the satellite
occupation terminates at a mass higher than the central
occupation cutoff; i.e., halos cannot host satellites with no
central galaxy. In this HOD model, Mmin, s Mlog , α, Msat, and
Mcut are the free parameters to be fit by observations, which
include both wp(rp) and the observed number density of
galaxies. Briefly, Mmin is the mass at which half the halos have
a central galaxy, s Mlog physically relates to the scatter of halo
mass at fixed galaxy luminosity, α is the power-law index for
the mass dependence of the number of satellites, Msat is a
typical mass for halos to host one satellite, and Mcut allows for
the cutoff in the satellite occupation function to vary with
halo mass.

In the simulation-based emulator, we also introduce three
additional parameters related to the halo occupation.

1. η con: the ratio between the concentration parameters of
the satellites and dark matter halos ηcon=csat/chalo,
where the dark matter halos are assumed to have a

Navarro–Frenk–White (NFW) profile (Navarro et al.
1996).

2. ηvs: the velocity bias parameter for the satellite galaxies,
σsat=ηvsσhalo, which rescales the velocity of the satellite
galaxies relative to the host halos; σsat and σhalo are the
velocity dispersion of satellite galaxies and dark matter
halos, respectively.

3. ηvc: the same as ηvs but for central galaxies.

The ranges of the HOD parameters used in this paper are
summarized in Table 1. The application of this model within
the range of the parameters can give consistent clustering
measurements with various observational data, such as Zheng
et al. (2007), White et al. (2011), Zehavi et al. (2011), Parejko
et al. (2013), Reid et al. (2014), Zhai et al. (2017), and
references therein. The HOD designs for the emulator are
realized in the Latin hypercube design through the maximin
distance design as detailed in the Appendix of Heitmann et al.
(2009). Specifically, we initialize a random distribution of a
number of points in a hypercube within the range (0, 1) and
switch the coordinate in one direction of a randomly chosen
pair of points. We iterate this process until the summation of
the distance between all of the possible pairs maximizes under
certain convergence conditions. The resulting hypercube is
linearly mapped into the HOD parameter space that forms the
basis for the training of the emulator.
We build a model of galaxy clustering for a sample at

z=0.57 and a space density of 4.2×10−4(h−1Mpc)−3. These
choices roughly approximate the BOSS CMASS galaxy sample
(Reid et al. 2014). The next paper of this series will apply the
model constructed in this work to the clustering measurements
of CMASS. The techniques developed here are easily
applicable to LRGs in current observations such as eBOSS
and near-future observations from the DESI survey. The halo
occupation of LRGs has been well studied for a decade; thus,
we are on firm theoretical ground to build our clustering
emulator. In this work, we fix the number density of the sample
and calculate Mmin once all other HOD parameters are known
as

ò=¯ ( ) ( )n
dn

dM
N M , 8

where dn/dM is the halo mass function taken from Tinker et al.
(2008a) for the analytic model. In future work, we will use the
mass function emulator derived from these simulations. We
note that in tests, the use of Tinker et al. (2008a) does not bias
the results of this paper.

2.4. GP Parameter Space

A GP is a collection of random variables, any finite number
of which have a joint Gaussian distribution. For a more detailed
discussion of GPs and their features, see Rasmussen &
Williams (2006). In the calculation throughout this work, we
employ the Python code george9 developed by Ambikasaran
et al. (2015).
A GP can be written as

~ ¢( ) ( ( ) ( )) ( )x x x xf m k, , , 9

where ( )xm and ¢( )x xk , are the mean function and covariance
function, respectively. For the sake of simplicity and with no

9 http://george.readthedocs.io/en/latest/
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loss of generality, we take the mean function to be zero in the
following. Given the input training data y=(y1, y2, ..., yn)

T at
coordinates x=(x1, x2, ..., xn)

T with Gaussian noise
  s~ ( )0, n

2 , we can write the joint distribution of the
observation and the function values f at the test locations x as






  

s~ +⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟( ) ( )

( ) ( )
y
y

x x x x
x x x x

K I K
K K

0,
, ,
, ,

,n
2

where ( )x xK , denotes the covariance matrix of all of the pairs
of training and test points, and the other entries have similar
meanings. The conditional distribution of a predicted function
value y can then be calculated as

   ~∣ ( ¯ ( )) ( )y x y x y y, , , cov , 10

where

 

  



s

s

= +
= -

´ +

-

-

¯ ( )[ ( ) ]
( ) ( ) ( )

[ ( ) ] ( ) ( )

y x x x x y
y x x x x

x x x x

K K I

K K

K I K

, , ,
cov , ,

, , . 11

n

n

2 1

2 1

The remaining problem now is to model the covariance matrix
for the training set and test points. This is implemented by
choosing a kernel function to populate the elements in the
covariance matrix. This is the crucial ingredient in a GP
predictor, as it encodes our assumptions about the function we
wish to learn (Rasmussen & Williams 2006). Due to the lack of
knowledge about the correlation in the coordinates, the choice
of the kernel function is not restrictive. The basic assumption is
that points that are close in parameter space are more strongly
correlated than points that are further separated, independent of
their absolute location in parameter space. Explicitly, we
assume the kernel function in our GP modeling to be a radial
basis function that just depends on = - ¢∣ ∣x xr . Some
examples of commonly used kernel functions in the literature
include the squared exponential covariance function,

= -
⎛
⎝⎜

⎞
⎠⎟( ) ( )k r

r

l
exp

2
, 12exp

2

2

where the hyperparameter l defines the characteristic length
scale. Another example is the Matérn class,

n
n n

=
G

n n

n

- ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )́k r

r

l
K

r

l

2 2 2
, 13Matern

1

where ν and l are the parameters, and Kν(r) is a modified Bessel
function. A special case in machine learning is ν=3/2, which
results in

= + -
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )k

r

l

r

l
1

3
exp

3
. 143 2

In our calculation, we find that a combination of
kexp(r)+k3/2(r) is already flexible enough to model the
correlation in the parameter space; therefore, more complicated
kernel functions are not used here. The hyperparameter l has a
separate length scale for each dimension in the cosmology and
HOD parameter space, corresponding to each component of the
argument r. This kernel function can have extra scalar
hyperparameters to scale individual terms or the overall

function, but it is not expected to have a significant impact.
The next step is the training of the GP, which involves the
selection of the hyperparameters of the kernel function. This is
through the maximization of the log-likelihood of the training
data:

 s s p= - + - + --( ) ∣ ∣

( )

y yK I K I
n

ln
1

2

1

2
log

2
log 2 .

15

T
n n
2 1 2

After this process is completed and the hyperparameters are
known, we can substitute the values into Equation (10) to make
predictions for the test points.

2.5. Estimating the Error on the Training Sample

In order to investigate the performance of the GP in building
the emulator, we first apply the above method to calculate wp

with the analytical method (Tinker et al. 2005, 2012). We also
need to estimate the appropriate error that the emulator will
take as input from the training sample. To estimate the error,
we use the suite of test simulations. Each of the seven test
cosmologies has five realizations (i.e., different initial condi-
tions); all other simulation properties, including volume and
mass resolution, are the same as the training sample. There are
two sources of error in the numerical simulations: (1) sample
variance in the cosmic structure and (2) shot noise from the
finite number of galaxies per halo. To isolate the sample
variance, we take each simulation and populate the halos 10
times with the same HOD but different random seeds. We then
take the average value of the clustering over these 10
populations. For each cosmology, we obtain a mean value of
the clustering and the five deviations from this mean. For the
total of seven cosmologies, we have 35 “differences from the
mean,” and the sample variance is taken to be the variance of
these 35 numbers.
We estimate the shot noise from the variance of the 10

populations of the HOD for a single simulation. Thus, we have
35 estimates of the shot noise, from which we take the average.
The total error is the quadrature sum of the shot noise and the
sample variance, shown in Figure 2. Sample variance
dominates at scales larger than ∼1 h−1 Mpc. When expressed
as a fractional error, we find that this error has little dependence
on either the cosmology or the HOD parameters. Thus, when
estimating the error from the training sample simulations, we
apply the result obtained above as a fractional error to all
simulations.

2.6. Implementing the Emulator Using the Analytic Clustering
Model

As with the design of the cosmologies, we apply the Latin
hypercube method and choose NHOD designs to sample the
HOD parameter space10 Figure 1 shows a randomly chosen
subsample of wp calculated with the analytical method. To
reduce memory consumption and CPU time, we select a

10 For the analytic model, we adopt NHOD=400 and therefore a sampling
scheme with overlap; for a simulation-based emulator, we choose
NHOD=2000, which results in a nonoverlap sampling scheme when the
number of subsamples of HOD models is 50 (randomly chosen for each
cosmology). In this case, for the analytic-based emulator, there is some subset
of sampling points with identical HOD parameters but distinct cosmological
parameters, while for the simulation-based emulator, each cosmology has a
completely distinct HOD subset.
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subsample of HOD models for each cosmology. This provides
full coverage of the HOD parameter space without requiring
400×40 training points. We construct independent emulators
for each bin in rp or s such that the emulator for a specific rp or
s bin has its own optimized hyperparameters. Although this
ignores a correlation between rp bins, we find that this approach
is optimal considering the balance between speed and accuracy.
Taking into account the correlation between different rp bins
can increase the training set and memory consumption
significantly, which can affect the optimization of the GP
parameters.

We first build the emulator under the ideal conditions, where
the training data are the original wp calculated with the
analytical method and the error σ=0. In order to evaluate the
emulator performance, we first randomly generate 200
cosmology sets and 200 HOD sets within the input parameter
space as Table 1, then calculate the wp with the same analytical
method at the same scales. We compare the “truth” with the
prediction from the emulator and calculate the fractional error;
the result is shown as the purple line in Figure 2. The error is
estimated as the 68% and rms error (the latter is not shown in
the figure for clarity) for all of the test points, and the results of
these two estimates are consistent, implying no catastrophic
outliers. This result shows that under the ideal conditions, the
emulator can give accurate predictions of the correlation
function, and that the GP modeling is robust. The error is
relatively constant at all scales, with an average value of 0.3%.

Next, we build the emulator with the same input training
coordinates, but we add a Gaussian random deviation with a
width of 1σto each training data point, where σ is the error
estimated from the N-body simulations as detailed in the
previous section. The comparison with the test points is shown
in Figure 2. This demonstrates that the accuracy is degraded as
we add noise to the input training data, but the decrease is not
significant relative to the 1σerror level itself. Then we add
Gaussian noise with a width of 1σto the test points as well
(green line in Figure 2). The results show that when both the
input training data and the test data have noise, the overall error
of the emulator is dominated by the error from the test points.
This implies that the GP-based emulator can provide estimates

of clustering with higher accuracy than the input training
sample. We note that this test is constructed over somewhat
idealized circumstances; the true error distribution may not be
exactly Gaussian, and it assumes that different rp bins are
uncorrelated. But even with these caveats, Figure 2 shows the
potential of the emulator to make high-accuracy predictions of
clustering.
Using the analytic model for wp, we can easily explore how

the accuracy of the emulator varies with position within the
cosmological parameter space. Figure 3 shows the 68% error
on wp as a contour plot on 2D projections of the cosmological
parameter space. The emulator in this test has 1σuncertainty
on the training sample, and the analytic model predictions are
taken as truth for the test points (i.e., the blue curve in
Figure 2). The error in this case purely comes from the
understanding of the GP from the noisy training set. The result
shows that the error of the emulator is more sensitive to the
value of σ8 than other parameters, but the variations of the
accuracy are small relative to the 1σerror level on the training
data. This implies that being near the edge in the parameter
space does not degrade the emulator accuracy.

3. Building the Emulator with N-body Simulations

The previous section demonstrates that the GP is a powerful
tool to emulate the galaxy correlation function. We now apply
this methodology to the estimate of the correlation function
directly from N-body simulations. The details of the simula-
tions are presented in DeRose et al. (2018). Briefly, the
simulation products are (1.05 h−1 Gpc)3 boxes with 14003

particles, resulting in a mass resolution of
´ W -

( ) h M3.51 1010
0.3

1m . Compared with the cosmology
designs used for the analytic emulator, the N-body simulations
have three extra parameters: w, the equation of state of dark
energy; Neff, the number of relativistic species; and
γf=f/fwCDM, the factor used to scale all halo velocities in
the simulation. A fractional change in this parameter is
proportional to the change in the linear growth rate at linear
and nonlinear scales (Reid et al. 2014). In addition, we also add
three HOD parameters, ηcon, ηvc, and ηvs, to incorporate the
spatial and velocity bias of galaxies within halos.
Our emulator of the galaxy correlation function using N-

body simulations has 15 parameters in the input parameter set.
Because of this increase in dimensionality, we find that a
design with 400 HODs is not sufficient to fully sample the
space. We increase the number of HOD designs, NHOD, to 2000
to obtain the training set. Note that the test cosmologies have
five boxes each, so we can get a more accurate estimate of the
correlation functions for these test points.
We build the emulator for the projected correlation function

wp, redshift-space monopole ξ0, and quadruple ξ2 estimated
from N-body simulations using the same strategy as the
previous section for GP modeling, including the kernel
functions and scale binning. We estimate the training error
for these statistics as detailed in the previous section and apply
it as a constant fractional error. The accuracy of the emulator is
obtained by comparing with the measurements from test boxes
that contain seven cosmologies, randomly choosing 100 HOD
sets in the same parameter space as the input training sample.
This results in a test sample of 700 models. The three columns
of Figure 4 present the performance of the emulator for wp, ξ0,
and ξ2.

Figure 1. Randomly chosen subsample of wp calculated with the analytic
method for the input training set (red) and the mean (black). The dotted and
dashed blue curves show two HOD models lower and higher than the mean wp,
respectively, with the same cosmology. For comparison, the measurements
from BOSS DR11 (Reid et al. 2014) are shown as dots with error bars ignored
for visualization purposes.

6

The Astrophysical Journal, 874:95 (12pp), 2019 March 20 Zhai et al.



The top left panel of Figure 4 shows a few examples of wp

chosen to spread over the wp amplitude calculated from the
emulator and directly from N-body simulations, respectively. It
shows that the emulator can generate high-accuracy predic-
tions. The bottom left panel shows the performance of wp from
the emulator. The solid red line is the error of the input training
set, which has a single population of dark matter halos for each
position in the parameter space. The dashed red line shows the

error for the test points, which is smaller than the training error,
since the test boxes have larger volume (5 (1.05 h−1 Gpc)3

boxes for each test cosmology) with multiple populations to
suppress the shot noise and sample variance. The emulator
performance is represented by the distribution of the shaded
area (1σ and 2σ, respectively). The overall error of the emulator
is 0.9% in the 1–10 h−1 Mpc range. Note that the emulator
prediction is directly compared with the measurements from the
test cosmology and HOD model (the test sample). Thus, the
accuracy (or residual) shown as the shaded area has two
components: the intrinsic emulator uncertainty (the dot-dashed
purple and solid blue lines in Figure 2) and the error of the test
sample, which is nonzero due to the finite population and
simulation volume.
The middle column of Figure 4 shows a similar result for the

monopole ξ0(s). A similar conclusion can be drawn about this
emulator. Note that the errors for the training sample and the
emulator are larger than wp at small scales due to the shot noise.
The right column of Figure 4 represents the result for
quadrupole ξ2(s). Because ξ2(s) approaches zero and goes
negative at some scale, the fractional error is not a useful
statistic for the emulator performance; here the results from the
emulator and the test boxes are shown as absolute errors. The
overall 1σerror of the emulator is smaller than 0.7 of the
training error at the scales of interest.
The error as estimated from the test points is smaller than the

error on the training sample, implying that the emulator is
performing better than the errors on its inputs. This
demonstrates that as long as the error of the input training set
is smaller than 1%, the emulator can generate predictions better
than 1%. In the following calculation, we define the pure error
from the emulator as the emulator uncertainty, which is
assumed to be independent from the error of the test points. The
addition of these error budgets in quadrature gives the total
error of the emulation, represented by the envelope of the
shaded area in the bottom panels of Figure 4. Compared with
the wp emulator using the analytic method in Section 2.6, the
simulation-based emulator does not perform much better than
the training error. This is partly due to the extended parameter
space and better modeling of the noise in the analytic-based
emulator, which is designed to be Gaussian-distributed. We
note that there exists a correlation between different statistics
and rp or s bins. Properly taking this correlation into account is
expected to improve the emulator performance. However, this
also means increasing the training sample significantly for
individual emulators and increasing memory consumption.
This implies that other interpolating schemes beyond GP are
worth investigating in future work.

4. Recovery of Cosmological Parameters and Constraint
from the Emulator

In linear theory, RSDs carry information about coherent
flows of matter into overdense regions. This boosts the
amplitudes of the RSD multipoles in a manner that is only
dependent on the degenerate parameter combination fσ8, where
f=γffwCDM, and fwCDM is the linear growth rate in the cold
dark matter cosmology. Scaling this factor by the halo velocity
parameter γf gives a direct estimate of the linear growth of
structure (Reid et al. 2014). At translinear and nonlinear scales,
the impact of peculiar velocities is more than simply a change
in amplitude. Nonlinearities are most obviously present in the
so-called finger-of-god effect (e.g., Jackson 1972), seen as an

Figure 2. Performance of the emulator with the analytic method. The red
dotted curve is the error level of the input training set (1σ). The purple line in
the bottom represents the emulator performance when the input training sample
and test sample have no error. When the training sample is perturbed with
1σnoise, we retrain the GP and generate emulator predictions to compare with
the test sample, which has zero and 1σnoise added. The performance is shown
by the blue and green lines, respectively. The 68% and rms error (not shown for
clarity) are nearly the same, implying that there are no catastrophic outliers.
The blue curve represents the error purely due to emulation. Assuming that the
errors from emulation and on the test points are independent, the final error
estimate of the emulator (green) is the two added in quadrature.

Figure 3. Error of the emulator of wp with the analytic method shown in
cosmological parameter space, obtained from 200 cosmologies randomly
sampled within the training parameter space. The error of each cosmology is
estimated from the 68% error of 200 test HODs. The figure shows the error
projected onto 2D parameter planes at scale: rp=5.48 h−1 Mpc. The results
for other scales have similar patterns. The errors shown here are normalized by
the mean of these errors at this scale (the blue solid line in Figure 2), and the
fluctuations at various positions in the parameter space are mostly around 20%–

30%. Compared with the input training error, which is a few times larger than
the mean, the error from the emulator is fairly constant across the parameter
space.
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elongation of the contours of the correlation function along the
line of sight (see, e.g., Peacock & Smith 2000). The amplitude
of this effect is sensitive to the mass scale of the halos
themselves, which is sensitive to the abundance of massive
halos and the details of the galaxy bias model.

In Figure 5, we present a pedagogical test in which we vary a
single cosmological parameter and show the impact on the
RSD monopole. Each time a parameter is varied, the real-space
correlation function, wp(rp), is refit to determine new HOD
parameters. Only HOD parameters that control the mean
occupation function are allowed to vary. In the left panel, we
vary the amplitude of the halo velocity field, γf, from 0.8 to 1.2.
The real-space clustering of each model is nearly identical in
each fit. At s>5 h−1 Mpc, we have the expected linear
behavior where increasing f increases the amplitude of ξ0(s). At
smaller scales, however, increasing f suppresses the monopole.
This is due to the increase in random motions of close halo
pairs, spreading these pairs out along the line of sight. This

suppression goes away at the smallest scales, where the pairs
are mostly within a single halo. The middle panel of Figure 5
shows variations in Ωm. Although increasing the matter density
increases the amplitude of the velocity field akin to changing f,
in this panel, we do not see the expected linear behavior at large
scales. This is because of the impact Ωm has on the shape of the
matter correlation function; increasing Ωm at fixed σ8 increases
large-scale power at s>10 h−1 Mpc for dark matter, which
means lower galaxy bias to preserve the real-space clustering,
and decreases the redshift-space monopole. In each of these
models, the fit to wp is consistent at rp<10 h−1 Mpc, but at
larger scales, the galaxy correlation functions diverge, leading
to the divergence seen in ξ0(s). At s<10 h−1 Mpc, nonlinea-
rities are already dominant over coherent velocity flows,
producing a trend of lower Ωm yielding higher ξ0(s). Changing
the matter density also changes the mass of dark matter halos;
thus, galaxy pairs within halos have higher relative velocities.
The right panel shows variations in σ8 at z=0. Increasing σ8

Figure 4. Performance of the emulator for wp (left), ξ0 (middle), and ξ2 (right) measured from N-body simulations. Top: the 10 randomly chosen models for wp, ξ0, and
ξ2 measured from simulations and the prediction from the emulator. They are shown as the ratio with respect to the mean measurement of the training sample for
visualization. Bottom: the 68% and 95% error distributions of the emulator performance, represented by the shaded area. The training sample error is the sample
variance on an individual simulation used in the training of the emulator, while the test sample error is from the mean of the five simulations, all of which have the
same volume as the training sample. Thus, the test sample has an error (dashed red) smaller than the training sample (solid red) due to larger simulation volumes. The
emulator performance (or residual) shown by the shaded area is directly obtained by comparing the emulator prediction with the measurements of the test cosmology
and HOD model from the simulation boxes. Note that the results for ξ2 (right panels) are presented by absolute error instead of fractional error, and the top panel shows
the performance of ξ2s

4 instead of ξ2s
2 for plotting purposes. The green dashed lines show the sample variance equivalent to the BOSS DR11 volume.

Figure 5. Cosmological parameter dependence of the redshift-space monopole given the real-space clustering amplitude. In the test, we fix all of the cosmological
parameters and perform an HOD fit to the given wp. From left to right, the cosmological parameters are the same except for γf (left), Ωm (middle), and σ8 (right), as
labeled. The gray band shows the sample variance equivalent to the BOSS DR11 volume, which is calculated by scaling the error estimate from the test boxes by the
volume ratio.
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increases the large-scale power in redshift space, as expected.
But σ8 also influences the abundance of massive halos: larger
σ8 results in more cluster-sized objects, which are the source of
galaxy pairs within the same halo at r≈1 h−1 Mpc. Because
the halos are massive, the relative velocities of galaxies within
these halos are large, leading to increased suppression of
redshift-space clustering at the transition between one-halo and
two-halo clustering.

These parameters impact galaxy velocities at large and small
scales, as well as the shape of real-space clustering. The
combination of real- and redshift-space observables therefore
provides enough leverage to break degeneracies and indepen-
dently constrain each of these three quantities, without the need
for a strong CMB prior. In this section, we demonstrate the
ability of our clustering emulator to recover the input
cosmologies both on the test N-body simulations and with
even higher-resolution simulations that can track substructure
within halos.

4.1. Recovery Test on Simulation Boxes

With the above emulator for the galaxy correlation function,
we can now fit a given measurement in cosmological and
galaxy occupation parameter space. The result can also provide
a direct measurement of fσ8 at z∼0.57. Moreover, the
combination of real- and redshift-space clustering affords
enough constraining power to break this degeneracy and
constrain f directly. As a first test, we randomly choose a
parameter set (including both cosmological and HOD para-
meters) from the test boxes and assume that the correlation
function measurements are “observational data.” Then we use
our emulator to generate predictions and construct a likelihood
function. To estimate the likelihood of a given model, we need
to estimate the covariance in the data. This includes not just the
correlation between r bins of a given statistic but also the
correlation between the statistics themselves. In order to
estimate this correlation between wp, ξ0, and ξ2 for the
likelihood function, we use the Minerva simulations, a set of
100 N-body simulations (Grieb et al. 2016). The parameters of
the HOD model are chosen to be “CMASS-like” at z∼0.57,
but in our test, we find that the errors depend little on the HOD
model. We calculate the galaxy correlation function from these
galaxy catalogs and estimate the correlation matrix (by
normalizing the covariance matrix for these galaxy correlation
functions).11 As a conservative test, we first choose the error of
the correlation function to be an addition in quadrature of the
error in the test simulations (which corresponds to a simulation
volume of about 5 (h−1 Gpc)3) and the emulator uncertainty as
defined above. The resulting error thus corresponds to a
simulation volume smaller than 5 (h−1 Gpc)3. We use this error
estimate as the diagonal elements combined with the

correlation matrix to populate the covariance matrix in our
construction of the likelihood function.12

The resulting likelihood function can be written as

 x x x x= - - --( ) ( ) ( )Cln
1

2
, 16emu obs

1
emu obs

where ξemu and ξobs are the correlation function from the
emulator and observation, respectively, and C is the covariance
matrix as defined above. The exploration is obtained through
an MCMC test with the Python package emcee13 (Foreman-
Mackey et al. 2013), which is based on an affine-invariant
ensemble-sampling algorithm (Goodman & Weare 2010).
Figure 6 shows constraints on the key cosmological parameters
of interest, as well as key HOD parameters that could show
degeneracies with cosmology. This result is obtained with flat
priors on the parameters, which are uninformative. As
expected, there is a strong degeneracy between γf and σ8.
The HOD parameter most degenerate with γf is Msat; lowering
Msat increases the bias of the sample, reducing the amplitude of
the two-halo redshift-space clustering. To counterbalance this,
γf increases the redshift distortions. This is the same reason for
the degeneracy between γf and σ8—lower σ8 requires a higher
Msat and bias to fit wp. For reference, the true cosmology is
indicated with the black cross.
The above constraints are obtained with no CMB priors

other than flat priors that define the parameter space of our
simulations. We also apply the constraint from Planck
measurement as priors of the cosmological parameter. In
particular, we choose the constraint on Ωm, Ωb, h, σ8, and ns
from the TT+lowP+lensing chain (Planck Collaboration
et al. 2015) of the ΛCDM model. The constraints are shown as
the red contours in Figure 6. Applying this Planck prior
significantly strengthens the constraints on both cosmology and
HOD parameters. This is primarily due to the strong prior on σ8
introduced by the Planck data.
We repeat the above test for 10 randomly chosen test

simulation boxes and HODs. The fractional errors on f and fσ8
are shown in Figure 7. The fractional error of f is mostly at 5%
or higher and can be improved significantly by the Planck data
to 2%–3%. However, for the product of fσ8, the improvement
from the Planck data is marginal compared with the correlation
function only, which constrains fσ8 to the 2%–3% level.

4.2. Scale Dependence of the Constraint on Structure Growth

The emulator for small-scale clustering allows exploration of
where the constraining power of structure growth comes from.
In this test, we randomly choose a test cosmology and constrain
the parameters as in Section 4.1, but now varying the minimum
scale of the data from 0.1 to 10 h−1 Mpc. We perform this scale
variation while also adjusting the inputs of the emulator in two
ways: (1) we compare the results of our standard (noisy)
emulator to those where the emulator predictions are
considered perfect (noiseless), and (2) we remove the
quadrupole from the analysis to determine how much
constraining power comes from the monopole only. The result

11 We have done a singular value decomposition (SVD) analysis as in
Gaztañaga & Scoccimarro (2005) and Sinha et al. (2018). We find that 23 of
the 27 singular values meet the criteria to contain useful information due to the
limited number of mocks that may impact the result. We further perform a
denoising analysis for the covariance matrix by setting the eigenvalues of the
covariance corresponding to the noisy eigenvectors to zero and use the
remaining eigenvalues to get the inverse of the covariance matrix. The resulting
cosmological constraint is degraded by a factor of 20%, which is a modest
impact on our final result. We note that this method may lose some of the signal
in the data but can serve as a conservative result (Sinha et al. 2018). 12 This implicitly assumes that the emulator prediction has an identical

correlation as the “observation.” This is not guaranteed in the application to real
or mock data, but the final result should not be affected significantly with a
more realistic model.
13 http://dfm.io/emcee/current/
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is presented in Figure 8 for f and fσ8. For comparison, the
results from Reid et al. (2014) and Samushia et al. (2014) are
also shown on the panel for fσ8; all emulator results have been
scaled to the volume of BOSS DR11. It is clear that the
cosmological information monotonically increases with
decreasing minimum scale. The addition of the quadrupole
tightens the constraints by a factor of 1.5 and 1.3 for f and fσ8,
respectively. At the minimum scale, our noiseless emulator
shows that a 3.6% measurement of fσ8 is possible with the
DR11 volume. For the noisy emulator, the accuracy of the

measurement is 5% compared with that measured from Reid
et al. (2014) for the same survey volume. Reid et al. (2014)
employed a single simulation box, which is equivalent to fixing
the cosmological model. We perform a similar test with this δ-
function prior on the shape of the matter power spectrum, and
the constraint is tightened by a factor of 3, as shown by the
triangle in Figure 8.
The above estimation can be generalized to other current or

future galaxy surveys. For a DESI-like LRG survey that covers
14,000 deg2 of the sky, the probed volume from z=0.6 to 1.0

Figure 6. Recovery test with the emulator on a randomly chosen test cosmology. The blue contours show the 1σ and 2σ constraint on a subset of the cosmological and
HOD parameters based on the correlation function measurements. The red contours indicate results with a Planck prior. The true (input of the test cosmology)
parameters are marked as dashed lines.

Figure 7. Constraints on f (left) and fσ8 (right) for 10 randomly chosen cosmology+HOD models, shown as fractional errors. The filled and open squares show 1σ and
2σconstraint, respectively. The blue and red bands show results without and with Planck priors. The average 1σ (2σ) constraint on f from all of these models is 5.3%
(9.9%) without and 2.3% (4.7%) with Planck priors, respectively, while the corresponding results for fσ8 are 3.0% (6.0%) without and 2.2% (4.5%) with Planck priors.
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is about 12 (h−1 Gpc)3, or twice the volume of one test
cosmology in our simulation. This leads to a final constraint of
2% for fσ8 and 4.6% for f, respectively, in this redshift range.

5. Discussion and Conclusion

Using the simulations of the AEMULUSProject (DeRose
et al. 2018), we have demonstrated the feasibility of
constructing an emulator for the real- and redshift-space
clustering of galaxies. Using simulations independent of the
training sample, our design for the emulator is able to predict
the clustering of galaxies to high accuracy over a wide range of
both cosmological and galaxy bias parameter space. For the
scales at which current surveys yield their most precise
measurements, 1 h−1 Mpc<r<10 h−1 Mpc, our model
predicts the galaxy clustering signal to better than 1% and
yields predictions that are significantly better than the sample
variance of the training sample simulations at smaller and
larger scales.

The primary purpose of the galaxy clustering emulator
presented here is to constrain cosmological parameters, with
emphasis on the growth of dark matter structure, parameterized
through f and the degenerate parameter combination fσ8. We
have shown that constraints on these parameters tighten
monotonically as smaller scales are included in the analysis.
For a BOSS-like survey, we estimate that we can achieve 5%
accuracy on fσ8 and 9% accuracy on f itself without using CMB
priors on any other cosmological parameters. This projection
for fσ8 is two times larger than what is achievable through
perturbation theory analysis of larger-scale information.

As we prepare this model for application to existing data,
there are several additional steps required. A fully robust model
requires incorporation of galaxy assembly bias into the halo
occupation model, which we will leave to a future work (S.
McLaughlin et al. 2018, in preparation). Expanding our
parameter space may degrade our constraints; thus, incorporat-
ing additional observational measures may prove fruitful. Void
statistics have been shown to constrain environmental depend-
ence of halo occupation (Tinker et al. 2006, 2008b). Other
statistics may also help with the degeneracies already seen in
the parameter constraints in Section 4.1 and Figure 6 (Wibking

et al. 2019). Guo et al. (2015) showed that measurements of the
small-scale three-point correlation function can significantly
enhance constraints on the velocity bias of central and satellite
galaxies, both of which show degeneracy with f. Among the
galaxy bias parameters, the strongest degeneracy with f is with
Msat, the mass scale of satellite galaxies. This parameter can be
measured directly through galaxy clusters; indeed, the M/N
ratio within clusters itself contains significant cosmological
information (Tinker et al. 2012; Reddick et al. 2014).
In addition to reducing the theoretical uncertainties of

modeling clustering at nonlinear scales, the simulation-based
approach used here is ideal for tackling observational
systematics as well. The next version of this emulator will be
applied to the existing LRG data sets, including CMASS,
LOWZ, and the eBOSS LRG sample at higher redshift (Parejko
et al. 2013; Zhai et al. 2017). The dominant observational
systematic for these samples is fiber collisions: the constraint
that two galaxies closer than 62″ cannot be observed at the
same time. Nearly all previous attempts to account for this
effect involve correcting the data (e.g., White et al. 2011;
Zehavi et al. 2011). By using simulations directly, it is possible
to forward model the impact of fiber collisions on observational
measures of clustering and incorporate any uncertainties in the
model itself.
Although we have focused on demonstrating the constrain-

ing power of small-scale clustering for a galaxy sample of a
given redshift and number density, the ultimate goal of the
AEMULUSgalaxy clustering emulator is to build a robust tool
to allow modeling of galaxies at any number density and
redshift. This will significantly increase the parameter space
and the dynamic range of clustering signals to be modeled. This
may require numerical algorithms beyond the traditional GP
(Ng & Deisenroth 2014). Our current results represent the first
significant step on the path to that goal, which we expect to be a
core technique in the analysis of next-generation galaxy
surveys.
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Figure 8. Scale dependence of the constraint on f (left) and fσ8 (right) from galaxy clustering measurements, assuming an SDSS DR11–like galaxy sample. Solid and
dashed lines correspond to constraints with and without quadrupole data, respectively. Blue lines assume that our emulator has no error in its prediction, i.e., the
covariance matrix in Equation (16) only contains sample variance, while the red lines assume that the emulator has error that is added in quadrature with the sample
variance. In the panel for fσ8, two measurements from Reid et al. (2014) and Samushia et al. (2014) for the BOSS CMASS galaxy sample are marked by a circle and
star. The triangle represents the noisy emulator test with fixed cosmological parameters. For the constraint with the noisy emulator (solid red), we find that the error for
f and fσ8 scales roughly with the minimum scale as rmin
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0.4 , respectively. (Note that the “noisy” and “noiseless” emulators have the same prediction of the galaxy
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in the likelihood function.)
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