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Abstract

Existing models for the dependence of the halo mass function on cosmological parameters will become a limiting
source of systematic uncertainty for cluster cosmology in the near future. We present a halo mass function emulator
and demonstrate improved accuracy relative to state-of-the-art analytic models. In this work, mass is defined using
an overdensity criteria of 200 relative to the mean background density. Our emulator is constructed from the
AEMULUS simulations, a suite of 40 N-body simulations with snapshots from z=3 to z=0. These simulations
cover the flat wCDM parameter space allowed by recent cosmic microwave background, baryon acoustic
oscillation and SNe Ia results, varying the parameters w, Ωm, Ωb, σ8, Neff, ns, and H0. We validate our emulator
using five realizations of seven different cosmologies, for a total of 35 test simulations. These test simulations were
not used in constructing the emulator, and were run with fully independent initial conditions. We use our test
simulations to characterize the modeling uncertainty of the emulator, and introduce a novel way of marginalizing
over the associated systematic uncertainty. We confirm nonuniversality in our halo mass function emulator as a
function of both cosmological parameters and redshift. Our emulator achieves better than 1% precision over much
of the relevant parameter space, and we demonstrate that the systematic uncertainty in our emulator will remain a
negligible source of error for cluster abundance studies through at least the LSST Year 1 data set.
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1. Introduction

The dependence of the halo mass function—i.e., the
comoving density of dark matter halos per unit mass—on
cosmological parameters enables the abundance of galaxy
clusters to be an exceptionally promising dark energy probe
(Albrecht et al. 2006). Indeed, the recent Dodelson et al. (2016)
report shows that galaxy clusters could provide the tightest
constraints yet on cosmological parameters, provided the
associated systematic uncertainties can be adequately con-
trolled. Current optical surveys such as the Dark Energy Survey
(DES Dark Energy Survey Collaboration 2005, 2016; Melchior
et al. 2017), the Hyper Suprime-Cam Survey (Miyazaki et al.
2012; Aihara et al. 2018), and the Kilo-Degree Survey (de Jong
et al. 2017; Radovich et al. 2017) can expect to observe
∼100,000 galaxy clusters, with this number growing by up to
an order of magnitude in the LSST era (Weinberg et al. 2013).
SZ and X-ray cluster catalogs (e.g., Piffaretti et al. 2011; Bleem
et al. 2015) will reach similarly large samples of clusters. Here,
we take an important step toward calibrating the cosmology
dependence of the halo mass function at a precision that is
sufficiently high to ensure this source of systematic uncertainty
remains negligible in the LSST era.

The largest source of uncertainty in cluster abundance studies is
generally cluster mass calibration. Observationally, cluster masses
are estimated using a mass–observable relation. The observable
can be the thermal SZ effect (Bleem et al. 2015; Dietrich et al.
2019; Stern et al. 2019), X-ray emission from hot gas (Piffaretti
et al. 2011; Mehrtens et al. 2012), or optical richness (Rykoff et al.
2016; Melchior et al. 2017; Simet et al. 2017). The recent analysis

of McClintock et al. (2019) in the DES Year 1 data set achieved a
5% calibration of the mass–richness relation of the redMaPPer
clusters. This is expected to improve to ∼1% for LSST and
extend out to redshifts z≈1.
In addition to uncertainties in the mass–observable relation,

the total error budget in a cluster abundance analysis must
include a contribution from modeling uncertainty. One such
example is the systematic uncertainty associated with modeling
the halo mass function. Reed et al. (2007) present a review of
halo mass function models published up to that point. A
discussion on accuracy requirements for mass function models
can be found in Reed et al. (2013). Assuming clusters map
perfectly onto halos, the systematic uncertainty in the
calibration of the halo mass function directly translates into a
systematic uncertainty in the predicted cluster abundance. The
Tinker et al. (2008) mass function reports an accuracy of ≈5%
for 1011<M<1015 h M1-

 halos at z=0. The calibration
was obtained using a suite of flat ΛCDM simulations that
varied the parameters Ωm, Ωb, σ8, ns, and H0.
Figure 1 presents the required accuracy for the systematic

uncertainty in the halo mass function to be negligible
(quantitatively defined below) in the DES Year 1, DES Year
5, and LSST Year 1 cluster abundance analyses. These
requirements are set by rescaling the statistical error reported
in McClintock et al. (2019) for the uncertainty in halo mass
calibration. Specifically, we demand that the theoretical
uncertainty in the halo mass function must not increase the
total error budget of a cluster abundance analysis by more than
10% relative to the error from mass calibration alone. The
details of this calculation, including assumptions regarding the
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lens source densities, survey areas, and depths, are provided in
Appendix B. Importantly, Figure 1 shows that the claimed 5%
accuracy at z=0 of the Tinker et al. (2008) mass function is
nearly sufficient for the DES Y1 data set, but not for future data
sets. Evidently, a new calibration of the halo mass functions is
required to prevent systematic uncertainties in the halo mass
function from contributing significantly to the cosmological
error budget in cluster abundance studies.

Early halo mass function models were analytic estimates (Press
& Schechter 1974). More recent analyses have calibrated fitting
functions from simulations (Sheth & Tormen 1999; Sheth et al.
2001). Jenkins et al. (2001) and Evrard et al. (2002) attempted to
find a universal fitting function accurate to ∼10%–20%, where the
mass function did not explicitly depend on cosmological
parameters. Later, Warren et al. (2006) calibrated a fitting function
on a single cosmology at z=0 and achieved ∼5% accuracy.
Tinker et al. (2008) calibrated the halo mass function to ≈5% at
z=0 for virial masses identified using the spherical overdensity
(SO) algorithm in the range M h M10 1011 15 1  -

. Tinker
et al. (2008) has been the standard for cluster abundance analyses
since then (Zu et al. 2014; Mantz et al. 2016; Planck Collaboration
et al. 2016). Similar high-precision calibrations of the halo mass
function for friends-of-friends halos also exist (Bhattacharya et al.
2011).

More recently, Heitmann et al. (2016) built a high-
dimensional interpolator using Gaussian Processes (Rasmussen
& Williams 2005) to model the halo mass function for halos
identified using a friends-of-friends (FOF) algorithm. In an
eight-dimensional cosmological parameter space they were
able to accurately model the mass function for their entire mass
range at z=0. The choice of halo finding algorithm impacts
the recovered halo mass function. In practice, the appropriate-
ness of different halo definitions depends on the specific
science question under consideration. In this work, we have
chosen to focus exclusively on SO halos. Note that the
connection between FOF and SO halos is nontrivial, and
exhibits strong asymmetric scatter (Tinker et al. 2008; More
et al. 2011). Thus we caution that our results are only
appropriate for the specific mass definition we have adopted.

The focus of this paper is to present a halo mass function
emulator calibrated specifically for SO halos in numerical
simulations. For the purposes of this work, halo mass is defined
using an overdensity threshold Δ=200b, which is 200 times
the mean matter density of the universe at the epoch at which
the halo is identified. Our approach involves emulating
parameters in a fitting function rather than n(M, z) directly.
This approach has an advantage over directly emulating the
mass function in that it requires significantly less training data.
Moreover, because our fitting functions are expressed in terms
of the peak height ν, much of the cosmological dependence of
the mass function is already removed. This way, the emulator
need only characterize any remaining cosmological sensitivity.
The original mass function by Press & Schechter (1974) was

universal when written in terms of the peak height ν. That is,
the authors proposed a form of the mass function that did not
explicitly depend on cosmological parameters nor did it evolve
over time. Recently, Despali et al. (2016) found that the mass
function using the Mvir definition is universal at the few percent
level, and that other definitions such asM200b are less universal.
For constant overdensities Δ Tinker et al. (2008) demonstrated
nonuniversality at the 20%–50% level between different
epochs in their simulations. Our emulator incorporates
nonuniversality by design, and we demonstrate the dependence
of the emulated halo multiplicity function on redshift, Ωm, and
σ8. We note that different definitions of halo mass may lead to
increased or decreased universality.
We quantitatively characterize the performance of our emulator

a posteriori and provide a model for the residuals of the halo mass
function emulator. This residual model accurately describes the
nonconstant uncertainty over the masses and epochs in our
simulations, allowing for the uncertainty in the mass function
emulator to be properly propagated into abundance analyses. We
find that our emulator achieves subpercent accuracy for certain
mass ranges, and is accurate enough for the LSST Y1 analysis out
to at least z=1.
The layout of this paper is as follows. In Section 2, we

briefly discuss the simulations used in this work, detail the
process of identifying halos, and define the fitting function
used. Section 3 describes our method for training the Gaussian

Figure 1. Required accuracy of the halo mass function for different surveys. These accuracies are calculated by demanding that the uncertainty in the halo mass
function not increase the error budget of a cluster abundance measurement by more than 10% relative to the uncertainty from cluster mass calibration. Mass calibration
uncertainties are estimated based on the DES Y1 measurements of DES Y1 cluster (blue; McClintock et al. 2019). DES Y5 (red) and LSST Y1 (green) requirements
are projected based on expected improvements of the weak lensing masses. Dashed lines are extrapolations to z=1. The black curve indicates the current accuracy of
the emulator. For details of how the accuracy requirements are computed, see Appendix B.
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processes and constructing the halo mass function emulator. In
Section 4 we show tests of the accuracy of the emulator, while
in Section 5 we present a model for the residuals of the
comparison between the emulator predictions and the measured
halo mass functions. Section 6 contains a discussion of
nonuniversality in the emulator for the halo mass function.
Section 7 shows the emulator predictions for additional
simulations that probe both lower and higher masses than
those used to construct our emulator. Section 8 summarizes our
results. In Appendix A we present tests of the residual model,
while in Appendix B we derive the accuracy requirements for
current and near-future cluster cosmology analyses. We make
our simulations available athttps://AemulusProject.github.io.

2. Simulations

Massive clusters live in the high-mass exponentially decaying
tail of the halo mass function. Properly investigating this regime
requires N-body simulations with enough resolution and volume to
ensure sufficient statistics for high-mass halos. Collectively, all our
simulations comprise the AEMULUS suite (DeRose et al. 2018;
Zhai et al. 2018). The “training simulations” used to construct the
emulator consist of 40 N-body simulations. Each simulation has a
length L=1050 h Mpc1- with periodic boundary conditions and
14003 particles. The cosmologies of these simulations span the
allowed 4σ parameter space spanned by a union of Planck and
WMAP9 (Hinshaw et al. 2013; Planck Collaboration et al. 2014)
plus BAO from BOSS (Anderson et al. 2014) and the Union 2.1
SNIa data (Suzuki et al. 2012). Initial conditions vary between
each simulation, and are specified using CAMB. As described in
DeRose et al. (2018), the cosmological sampling of the simulations
was designed using an orthogonal Latin hypercube design
(Heitmann et al. 2009) and they have an effective volume of 42
(h Gpc1- )3. Particle masses are given by M 3.513part = ´

h M1010
0.3

1mW -
( ) .

In order to assess the performance of the emulator we ran
another set of 35 simulations, dubbed the “test simulations.”
These simulations are comprised of seven different cosmolo-
gies with five different sets of initial conditions per cosmology.
The five realizations are combined in order to reduce sample
variance when validating the emulator performance. None of
the test simulations were used in the construction of the
emulator, and they span the range of cosmological parameter
space used to define the training simulations.

2.1. Cosmological Models

Cluster abundance is most sensitive to the matter power
spectrum normalization as specified by σ8 and to the matter
density ΩM. The training simulations exist in the parameter
space p h h w n H N, , , , , ,b c s

2 2
0 eff 8sÎ W W[ ], where Ωb is the

baryonic matter fraction, Ωc is the cold dark matter fraction, ns
is the power spectrum index, h=H0(100 km s−1 Mpc−1)−1 is
the Hubble constant, and Neff is the effective number of
relativistic species. Both the training and test simulations are
shown as points in Figure 2 overlaid on top of the likelihood
contours they are designed to span.

2.2. Halo Identification

Halos were identified using the ROCKSTAR halo finder
(Behroozi et al. 2013), which identifies halos across simulation
snapshots. We use the M200b mass definition, where the halo is

defined as a SO Δ=200 times more dense than the
background. We use the strict SO definition, where strict refers
to the inclusion of unbound particles in the halo mass estimates.
We conservatively only consider halos with 200 or more
particles. The mass and abundance of the halos with the
smallest particle numbers (below 500–1000 particles) were
found to depend on the mass resolution of the simulations. To
account for this systematic, we applied a correction to the
recovered abundances as described in Section 4.2.5 of DeRose
et al. (2018).
Halos in each snapshot were split into 20 mass bins beginning

at the minimum halo mass resolved in each simulation.
The maximum edge was fixed arbitrarily at 1017 h M1-

;
however, the maximum halo mass in the simulations was 7.06×
1015 h M1-

. This resulted in the number of bins with halos
varying across snapshots, with ∼5 at z=3 and ∼15 at z=0.
Subhalos were ignored, where we used the default ROCKSTAR
subhalo definition in which subhalos are identified when a halo
is within the radius of a larger halo, defined by R200b. Using
83=512 spatial jackknife subregions, we estimated the
covariance matrix between bins in a given snapshot. We ignore
correlations between mass bins across different snapshots when
performing the fits described in Section 2.3.

2.3. Mass Function

Our emulators were not trained on the measured mass
functions directly. Instead, we fit the mass function of each
simulation snapshot with a modified version of the mass
function presented in Appendix C of Tinker et al. (2008).
Similar fitting functions were presented in Jenkins et al. (2001)
and Warren et al. 2006. In Tinker et al. (2008), the
cosmological parameters altered the mass function in two
ways: (1) they alter the contribution of matter to the critical

Figure 2. CMB+BAO+SNIa allowed parameter space (contours) for σ8 and
ΩM. This is a combination of BAO from BOSS DR11, the Union 2.1 SNIa
catalog, and Planck/WMAP9. Contour levels are the 1σ, 2σ, and 3σ
confidence contours. Points are the locations of the training simulations used
to construct the emulator. The red stars mark the locations of the test
simulations.
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density Ωmρc and (2) they change the mapping from mass to the
rms variance of the linear density field σ(M, z). We extend this
approach by allowing the fitting function parameters to have
cosmological dependence as well, which is captured using the
Gaussian processes that underpin the emulator.

This fitting function has the following form:

dn

dM
G

M

d

dM

ln
, 1m

1
s

r s
=

-
( ) ¯ ( )

where the halo multiplicity function G(σ) is given by
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Here, σ2 is the rms variance of the linear density field

dk

k

k P k z
W kR

,
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evaluated at the Lagrangian scale of the halo, i.e.,
R M3 4 m

1 3pr= ( ¯ ) . P(k, z) is the linear matter power spectrum

as a function of wavenumber k and redshift z, and Ŵ is the
Fourier transform of the real-space top-hat window function.
Additionally, we require all dark matter to reside in halos,
which implies

d Gln 1. 41ò s s =- ( ) ( )

The peak height of a halo is defined as ν=δc/σ(M), where
δc=1.686 is the critical density for collapse and σ(M) is given
by Equation (3).

The simulation is unable to sample arbitrarily large modes of
the power spectrum due to the finite size of the box. We
confirmed that our results are insensitive to a cut in k=2π/R
at the scale of our simulation R=1.05 h Gpc1- . We use the
publicly available CLASS7 to calculate the power spectrum. We
note that attempting to use analytic transfer functions resulted
in a clear decrease in performance by the emulator. By solving
Equation (4) we can write B in terms of the remaining free
parameters in Equation (2):

B e g
d

g
f

2
2 2

. 5d d f2 2
1

= G + G- -
-

⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

The fitting function parameters are d, e, f, and g. The parameter
e sets the amplitude and d and f set the slope of low-mass
power law; g determines the cutoff mass where the abundance
of halos decreases exponentially. Empirically we find that for
every cosmology tested, the redshift evolution of the best-fit
parameters is well described as a linear function of the scale
factor a. This was confirmed by fitting for the parameters
individually in each snapshot and observing a linear trend with
scale factor. Therefore, in our analysis we simultaneously fit all
snapshots of each simulation simultaneously enforcing linear
evolution of the fitting parameters. Specifically, we set:

p a p a p, 0.5 . 60 1W = W + - W( ) ( ) ( ) ( ) ( )

In this equation, p0 is the value of the fitting function parameter
at a scale factor of a=0.5 and p1 is the slope of the parameter
as a function of the scale factor. We found that fixing d0=2.4

and f1=0.12 optimized the performance of our emulator while
removing degeneracies among our full parameter set. We still
allow d1 and f0 to vary as a function of cosmological
parameters. Note that by construction the Gaussian processes
only interpolated over cosmological parameter space and not
over redshift and mass.

2.4. Fitting the Training Simulations

After measuring the mass function in each simulation, we
found the best-fit model using the fitting function in
Equation (2). The best-fit parameters are later interpolated
across cosmological parameter space using Gaussian processes
in order to create the emulator. Our best-fit models are obtained
by maximizing the likelihood

N N C N Nz z z zln
1

2
,

7
i

i i
T

N i i i
0

9

model ,
1

model å= - - -
=

-( ( ) ( )) ( ( ) ( ))

( )

where i indexes the 10 snapshots at each of the zi redshifts, CN,i

is the jackknife-estimated covariance matrix of the abundances
at snapshot i, and N(zi) is the mass function data at each mass
bin in that snapshot. When inverting CN,i we applied the
correction from Hartlap et al. (2007). The measured quantity is
the number of halos in a given ( jth) mass bin Nj. The mass bins
are not small, so they are modeled by

N V dM
dn

dM
, 8j

M

M

model,
j

j

min,

max,

ò= ( )

where V h1.05 Gpc3 1 3= -( ) is the volume of the simulation,
and M jmin, (M jmax, ) is the minimum (maximum) mass in the jth
bin. Choosing the number of bins meant striking a balance
between obtaining as much resolution as possible while
keeping the covariance matrix small enough to estimate by
using a spatial jackknife. We used the MCMC code emcee
(Foreman-Mackey et al. 2013) to obtain full posterior
probability distributions for each of the parameters d1, e0 e1,
f0, g0, and g1 for each simulation, imposing flat priors on each
of the parameters.

3. Emulator Design

The emulator uses Gaussian processes to perform regression
on the parameters d1, e0, e1, f0, g0, and g1 as a function of the
cosmological parameters discussed in Section 2.1. In total the
emulator is comprised of six independent Gaussian processes.
Since the Gaussian processes are independent, we had to rotate
the parameters into an orthogonal basis. After doing so each
new parameter was labeled d1¢, e0¢, e1¢, f0

¢, g0
¢, and g1

¢. To achieve
this we took the MCMC chain from the central-most
simulation, index 34, and computed the covariance matrix of
the parameters in this chain. Then, by computing its
eigenvectors we constructed a rotation matrix that diagonalizes
this covariance matrix. We applied the rotation matrix to the
MCMC chains for each simulation, so that the parameters of
the new chains were all approximately orthogonal. We tested
that the rotation matrix used depended only weakly on
cosmology, and that the choice of which simulation was used
to construct the rotation matrix did not influence the
performance of the emulator.7 http://class-code.net/
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Each Gaussian process uses the mean and variance of the
posterior probability distributions of the orthogonal parameters
to interpolate across cosmological parameter space. When the
Gaussian process was used to predict parameters at a new
cosmology, the predicted values were rotated back to the
original basis.

3.1. Gaussian Process Kernel

Consider a set of n measured data y i n1, ,i Î ¼[ ] with
variance i

2s , located at xi. If the covariance between two
measurements yi and yj depends only on xi and xj, then the
measurements can be approximated by a Gaussian process

x Cy , m= ( ( ) ), where μ is the “mean function” and C is the
covariance matrix. As described in Rasmussen & Williams
(2005), modeling some data as a Gaussian process amounts to
correctly modeling the covariance, since the mean of the
observations y can be subtracted off such that 0m = . Once a
set of data is successfully modeled in this fashion, the Gaussian
process can be used for interpolation. Thus, our approach is to
find an optimal covariance matrix describing the mass function
parameters as a function of cosmology. This allows us to
interpolate from the locations in parameter space corresponding
to our simulations to arbitrary cosmologies. We use the
Gaussian process implementation in the PYTHON package
george8 (Ambikasaran et al. 2015).

We model the covariance matrix as

C K S, 9= + ( )

where K is the kernel matrix and S is a diagonal matrix
containing the variance of the training data x

2
i

s . Each element
of K contains the covariance between two data points given by
a kernel function. The Gaussian processes were constructed
using a squared-exponential kernel:

x xk k
x x

L
, exp

2
, 10

i

N
i i

i
0

2

2

p

å¢ = -
- ¢⎛

⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( )

where Li is the length scale of the ith cosmological parameter,
k0 is the kernel amplitude, and Np is the number of
cosmological parameters. We found fixing k0=1 to be an
optimal configuration of the emulators in that residuals of the
emulator prediction were minimized. In this approach the Li are
the hyperparameters of the kernel that we seek to optimize in
order to model the covariance of the data. Their values are
found by maximizing the likelihood

C Cp pln
1

2

1

2
ln det , 11T 1 = - D D -- ( )

where p p pemuD = - . That is, Δp is the difference between
the measured mass function parameters p d e e f, , , ,1 0 1 0Î ¢ ¢ ¢ ¢{
g g,0 1
¢ ¢} and the predictions from the emulator. Attempting to

include k0 as a hyperparameter to optimize along with the Li
allowed the Gaussian processes too much flexibility despite
maximizing the likelihood in Equation (11). This resulted in
poor performance in the tests discussed in Section 4.

4. Emulator Accuracy

We tested the overall accuracy of our emulator using two
sets of tests: leave-one-out tests and predictions of the mass
function measured in the test simulations. In both of these tests,
the quantity we calculated was the residual difference between
the emulator prediction and the observed number of halos in a
given mass bin. Specifically,

R
n n

n
. 12emu

emu
=

- ( )

In order to compare the emulator performance across simula-
tions of different volumes, we have switched to halo number
densities n rather than the actual number of halos N.

4.1. Leave-one-out Tests

The leave-one-out tests consist of retraining the Gaussian
processes, leaving out the ith simulation, and then attempting to
predict its mass function. The black points in the left panel of
Figure 3 show the fractional difference between the measure-
ment and emulator prediction from these tests. The inverse-
variance weighted mean of the absolute value of the residuals is
0.57%. These tests are Poisson limited past the exponential
cutoff at ν≈3, where the residuals begin to fan out. The mass
of the exponential cutoff depends on the redshift and
cosmological parameters.

4.2. Validation on the Test Simulations

We test the performance of our emulator with the
independent test simulations. We first calculated the average
mass function for all simulations that used a single cosmology.
Within a given snapshot we calculated the average of the five
jackknife estimates of the covariance matrix between the mass
bins, and divided this by a factor of five to arrive at the
covariance matrix for the mean mass function.
The red points in the left panel of Figure 3 show the

fractional difference at all redshifts for all test simulations.
The inverse-variance weighted mean of the absolute value
of the residuals is 0.47%, lower than the corresponding value
for the leave-one-out tests. Figure 4 shows the prediction and
residuals for all the test simulations at four redshifts. The lower
panel also shows the modeled emulator uncertainty described
below in Section 5.
We also test the accuracy of the Tinker et al. (2008) fitting

function for the test simulations and compare it to the emulator
in Figure 5. The top panels show histograms of the residuals
between the simulations and the Tinker et al. (2008) model,
while the bottom panels show the emulator, with bars colored
by redshift: higher redshifts in red and lower redshifts in blue.
The inverse-variance weighted mean of the absolute value of
the residuals of the Tinker et al. (2008) model is 3.4%,
substantially larger than the 0.47% found for the emulator. The
Tinker et al. (2008) model performs worse than the emulator at
all redshifts, though the accuracy is consistent with ∼5% at
z=0. At high redshifts, their model deviates from the
simulations significantly, with differences in excess of 100%
for snapshots at z=[2, 3]. In contrast, the emulator is much
more consistent with the simulation, achieving subpercent
accuracy for all snapshots. Though not apparent from Figure 5,
the accuracy of the Tinker et al. (2008) model depends on the
cosmological parameters of the simulation, unlike the emulator.
This is not unexpected because the Tinker et al. (2008) model8 http://george.readthedocs.io/en/latest/
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was calibrated using simulations in a lower-dimensional
parameter space. We performed an identical analysis on the
mass function to that presented in Tinker et al. (2010) and
found comparable results.

5. Modeling the Residuals

The leave-one-out tests and comparisons to the test
simulations demonstrate that the emulator accurately models
the mass function. Additionally, Figure 3 shows that the level
of accuracy is mass dependent. We model this mass
dependence using the residuals from the test simulations as
defined in Equation (12). The covariance between the residuals

of a single mass bin in the ith snapshot in a given simulation is

C
C

n
, 13R i

n i
,

,

emu
2

= ( )

where C C Vn N
2= is the covariance between the cluster

counts used in Equation (7) divided by the square of the
volume. As before, we ignore covariance between snapshots
from the same simulations.
The left panel of Figure 3 demonstrates how the residuals

depend on peak height and redshift. We model the mass-
dependent emulator uncertainty, or residual model, using a

Figure 3. Left: residual difference between the emulator prediction and the measured mass function for each mass bins in all snapshots of all of the training and test
simulations. The light and dark lines indicate the modeled emulator uncertainty (Equation (14)) at z=[0, 1], respectively. Note at fixed peak height, the emulator
precision improves with increasing redshifts. Right: the modeled emulator accuracy at five redshifts as a function of mass. At fixed mass the emulator accuracy
degrades with increasing redshift due to the decreasing halo density with increasing redshift. By contrast, when working at peak height, the opposite trend is seen:
higher precision at increasing redshift. The difference reflects the redshift-dependent mapping between mass and peak height. For more details about fitting and
verifying the model for the emulator accuracy, see Appendix A.

Figure 4. Mass function measurements and emulator predictions for the seven
test simulations at four redshifts. These simulations were not used to train the
Gaussian processes in the emulator, and span the entire range of cosmological
design space. Points are placed at the mean halo mass of the corresponding bin,
and can sometimes scatter left or right when halos are scarce at high masses.
Lines in the lower panel show the modeled accuracy predictions from
Equation (14) at z=[1, 0] in red and blue, respectively.

Figure 5. Residuals from comparing the simulations to the emulator prediction
(bottom) and the Tinker et al. (2008) model (top) colored by redshift, where red
is high redshift and blue is low redshift. The left panels show the fractional
differences, while the right panel show the distribution of χ. The residual
model has not been included in the denominator of the right panels, in
comparison to Equation (17).
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power-law function in ν and scale factor a=1/(1+z) given
by

z A, 10 , 14R
b c d z

model R R Rs n = + n+ + ( ) ( )

where 3n n= - and z 0.5
z

1

1
= -

+
 . The free parameters are

AR, bR, cR, and dR. This residual model was added to the
diagonal of the covariance matrix in Equation (13)

C C I . 15R i R i, , model
2s= +

~ ( )

Additionally, we added in quadrature additional uncertainty
along the diagonal equal to half the correction to the
abundances described in Section 2.2. This only negligibly
affected the recovered residual model. The free parameters of
the residual model were found by maximizing the likelihood

R C R Cln
1

2
lndet , 16R

i
i R i i R i
T

,
1

, å= - +
~ ~-

( ) ( )

where Ri contains the residuals of the ith snapshot of a
simulation and the sum runs over all snapshot in all
simulations. In this way, we model the residuals of individual
snapshots as a Gaussian with zero mean and covariance given
by Equation (15).

The residual model evaluated at five redshifts appears in the
right panel of Figure 3. At fixed mass the accuracy gets worse
with redshift, due to the scarcity of massive halos at high
redshift. Notably, the trend of the residual model at fixed peak
height as a function of redshift is opposite to the trend for mass.
At fixed mass, the accuracy degrades at higher redshifts due to
there being fewer halos. The halos found at high redshift reside
in the highest peaks of the density field, meaning the model is
accurate at high peak height at high redshift. This is due to the
nonlinear dependence of ν(M). Additionally, because the
Poisson noise is large at high redshift, the residual model
described here disfavors a large uncertainty at these redshifts.

In order to assess the performance of the residual model, we
computed the distribution of

n n n
, 17R

R

emu emu

2
model
2

c
s s

=
-

+

( ) ( )

and performed numerous tests detailed in Appendix A to
confirm its validity. These included comparing the distribution
of χR for different cuts in mass and redshift, as well as
computing the χ2 of individual snapshots. The residual model
passed all tests, and we found that six out of 668 mass bins with
more than 20 halos were more than 3σ outliers. Notably, four
of the outlier mass bins occurred in the same cosmology.

Modeling the residuals allows us to make random realiza-
tions of our model uncertainty. Doing so allows one to
propagate the mass-dependent modeling uncertainty forward in
an abundance analysis. This is accomplished by drawing
random residuals from the recovered model uncertainty.
Critically, we do not expect this model uncertainty to oscillate
wildly as we vary the peak height ν. Rather, we expect the
modeling uncertainties to correspond to large-scale fluctua-
tions, meaning fluctuations in neighboring peak-height values
and/or neighboring redshifts must be strongly correlated.
Given two peak heights ν1 and ν2 at two different redshifts z1
and z2, we model the correlation coefficient of the model
uncertainties with a simple exponential. That is, we set the

covariance matrix of the model uncertainties to be:

C z z e z z, , , , , , 18z
1 1 2 2 model 1 1 model 2 2

2 2n n s n s n= n-D -D( ) ( ) ( ) ( )

where 1 2n n nD = - and z z z1 2D = - and we have assumed
a correlation length of 1 for ν and z. This choice was justified
by computing the correlation length from the mass function
covariance matrices CN, which was approximately unity.
With the covariance matrix of Equation (18), we can model

the residual systematics as a Gaussian random field. By
defining a grid in ν and z, we can compute the corresponding
covariance matrix, and make random realizations along this
grid that can be interpolated over in order to arrive at smooth
residual functions that fall within the statistically allowed range
based on our simulation tests. By performing these random
draws as part of an MCMC algorithm, one can effectively
marginalize over the theoretical uncertainty in the mass
function from our emulator. Our implementation of the
emulator includes this capability so that analyses can easily
marginalize over the emulator uncertainty.

6. Mass Function Universality

The halo mass function is universal if the halo multiplicity
function G(σ) in Equation (2) does not depend explicitly on
cosmological parameters or redshift (Jenkins et al. 2001;
Evrard et al. 2002). Tinker et al. (2008) found that the mass
function was not universal as a function of redshift, or
correspondingly large changes in cosmological parameters.
This was true whether they used M200b halos or those defined
by Δvir. Recently, Despali et al. (2016) presented a fitting
function to convert SO definitions to Δvir, which they found to
be a more universal definition than others, at least at z=0.
However, testing the universality of the mass function is
limited by the precision of the simulations, and also may be
influenced by baryonic effects (see Bocquet et al. 2016). In
practice, whether the mass function is universal or not is not
relevant for a cluster abundance analysis as long as a model
exists that predicts the mass function adequately well. Our
emulator explicitly contains nonuniversality by allowing the
parameters in Equation (2) to vary with cosmology.
Figure 6 shows the variation of the multiplicity function in

the emulator as a function of Ωm, z, and σ8. G(σ) depends
sensitively on each of these as well as the other cosmological
parameters varied in our simulations. The trend of G(σ) with
Ωm are the most straightforward. Recall that, in this panel, all
models are constrained to have the same σ8 at z=0. Thus, at a
given peak height—relative to the mean density—structure
collapses earlier when the matter density is lower. Earlier
collapse leads to higher halo concentration, and a higher mass
within Rvir at z=0. Thus the abundance of halos at fixed ν
increases with lower Ωm. Similar logic can mostly explain the
other trends—halos at fixed M have higher concentrations at
lower redshifts, thus higher G(σ). And higher values of σ8 lead
to more early forming, highly concentrated structure as well.
This demonstrates that the halo multiplicity function in our
emulator is not universal. This figure serves the same purpose
as the sensitivity plots presented in Heitmann et al. (2009),
where they demonstrated the dependence of their power
spectrum emulator on cosmological parameters.
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7. Comparison to Other Simulations

To assess the performance at lower halo masses, we
compared the emulator to a set of simulations run with 20483

particles in volumes 400 h Mpc1- per side resolving halos
down to h M1011 1~ -

 with about 200 particles. These are two
of our high resolution suite of simulations. The full high
resolution suite is still in progress; it will be comprised of 25
simulations run within the currently allowed parameter space
shown in Figure 2. These are not incorporated into the training
data of any of our emulators at present.

We also ran additional simulations with 3 h Gpc1- per side
and 20483 particles in order to resolve high-mass halos of mass
up to h M5 1015 1~ ´ -

. The cosmological parameters of the
large boxes were identical to our test simulations to check for
consistency across the simulations. We note that we have seen
clear evidence that the finite particle correction described in
Section 4.2.5 of DeRose et al. (2018) is resolution dependent,
and therefore this correction should not be applied to our large
volume simulations. For this reason, when comparing our large
volume simulations to our emulator we restrict ourselves to
halos with masses M h M3 101014 1 ´ -

, corresponding to
halos with �1000 particles.

The comparison to these simulations is shown in Figure 7.
Our modeling uncertainty (Section 5) is only valid for the range

of masses used to construct the emulator and may not
extrapolate well. However, as can be seen from Figure 7, our
emulator extrapolates well down to h M1011 1» -

 at the ∼2%
level. Due to the possibility of systematics from unconstrained
cosmological dependencies and sample variance, we conserva-
tively estimate a precision at these low masses at ≈5%. In the
high resolution simulations it appears that the emulator
underpredicts the mass function at M1013h−1 Me. How-
ever, this is actually due to the correlation of mass bins below
the limits of our training data with those within the limits. That
is, the low-mass bins h M1013 1< -

 scattered high, causing the
bins above this mass scale to also scatter high. This is reflected
in the fact that we found an acceptable χ2 value for mass bins
within our mass limits, but a poor χ2 value when including the
low-mass bins. At high mass the emulator is consistent with the
large simulations.

8. Conclusions

We present an emulator for the halo mass function
constructed from halos identified with spherical overdensities
200 times more dense than the background, the M200b mass
definition. This emulator relies on Gaussian processes trained
on parameters of a fitting function for the halo multiplicity. In

Figure 6. Fractional difference of the halo multiplicity function G(σ) as a function of cosmological parameters and redshift compared to a fiducial cosmology at
z=0.5. If G(σ) were universal it would not depend on cosmological parameters or redshift. For clarity the plots are shown as a function of peak height ν=δc/σ,
where δc=1.686.

Figure 7. Comparison between the mass function predicted by the emulator and (A) two high resolution boxes with 400 h Mpc1- on a side (left), and (B) even
simulations with 3 h Gpc1- on a side (right). Note that the emulator predictions (dotted lines) for the two high resolution simulations nearly overlap. Lines in the lower
panels are the emulator modeling uncertainty from Equation (14) plotted in the mass range available to the simulations used to train the emulator. The emulator
extrapolates well down to low masses. We conservatively claim an accuracy of 5% to low masses. At high masses the observed abundances are consistent with the
emulator predictions.
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this way, nonuniversality is directly incorporated into the
design of the emulator.

We construct the emulator from a suite of 40 simulations. An
additional independent set of 35 simulations is used for
validation. These test simulations are comprised of five
independent simulations of seven different cosmologies,
enabling us to reduce the sample variance for each of the
seven test cosmologies in the test simulations by a factor
of five.

The performance of the emulator is measured with two sets
of tests: leave-one-out tests and comparisons to the test
simulations. In both tests the emulator successfully predicted
the mass function to better than 1% accuracy in the low-mass
(i.e., power-law) regime for the redshifts considered. Validation
of the accuracy at the high-mass end (i.e., the exponential tail)
is limited by Poisson noise in the number of halos. We
successfully modeled the overall uncertainty of the emulator
across our entire mass range. Finally, we demonstrated in
Figure 1 that the precision achieved by our emulator is
sufficiently high for systematic uncertainties in the halo mass
function from dark matter simulations to remain negligible for
the DES Year 5 and LSST Year 1 cluster abundance analyses.

T.M. and E.R. are supported by DOE grant DE-SC0015975.
E.R. acknowledges additional support by the Sloan Founda-
tion, grant FG-2016-6443. J.L.T. and R.H.W. acknowledge
support of NSF grant AST-1211889. J.D., R.H.W., S.M., and
M.R.B. received support from the U.S. Department of Energy
under contract number DE-AC02-76SF00515. Y.Y.M. is
supported by the Samuel P. Langley PITT PACC Postdoctoral
Fellowship. This research used resources of the National
Energy Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

Software: Python, Matplotlib (Hunter 2007), NumPy (van
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(Springel 2005), 2LPT (Crocce et al. 2006).

Appendix A
Assessing the Emulator Uncertainty Model

Residuals between the emulator and the simulations occur
for three reasons: systematic differences between the emulator
and the true mass function, Poisson noise in the number of
halos, and sample variance due to the particular realization of
density modes present in the simulation. Poisson noise and
sample variance are estimated through the jackknife covariance
matrix from each simulation snapshot. The accuracy of the
emulator σmodel is calibrated as described in detail in Section 5.
To validate the estimated accuracy of the emulator, we define

n n n
. 19R

R

emu emu

2
model
2

c
s s

=
-

+

( ) ( )

Figure 8 shows the distribution of χR for two splits of the
residuals, by mass and by redshift, for all snapshots for bins
with more than 20 halos. The splits were chosen to have
approximately the same number of residuals on either side.
Outliers (>3σ) occurred as follows: 1 out of 43 bins at z=3, 3

out of 44 bins at z=2, and 1 out of both 83 and 85 bins at
z=0.1 and z=0, respectively. This is 6 mass bins out of a
total of 668 across all redshifts in all simulations. The Tinker
et al. (2008) model was significantly more discrepant at all
redshifts compared to the emulator.
While Figure 8 is useful for visualization, the fact that

different bins are correlated implies that we cannot use the
distribution of residuals χR to establish goodness of fit. Instead,
we compute the total χ2 of the emulator across all simulations
for each individual snapshot. For each individual snapshot of
each simulation, we computed

RC R , 20T2 1c =
~- ( )

where C
~

is defined in Equation (15), and we incorporate the
finite resolution correction discussed in Section 2.2 as
additional uncertainty. We then summed over all our test
simulations to arrive at a final χ2. We found that all snapshots
exhibited an acceptable total χ2 across all simulations for
z�2. At z=3, the χ2 of the emulator is slightly high,
yielding χ2/dof=47/28. The worst of the remaining χ2

values is χ2/dof=96/85 at z=0. These results demonstrate
that the emulator accurately predicts the mass function up to at
least z=2. At z=3, the emulator might be slightly over-
optimistic, though the difference is clearly not strongly
significant.

Appendix B
Accuracy Requirements

The required accuracy of the halo mass function is set by
considering the uncertainty on cluster abundances in real
surveys. In a survey, clusters are binned by some observable
that is related to mass, for example, redMaPPer richness
(Rykoff et al. 2014), X-ray luminosity or temperature, or
Sunyaev–Zeldovich signal. The mean cluster mass of objects in
these bins is measured using techniques such as weak lensing.
If clusters are binned by mass, the number of clusters in a
single bin is

N M
d N

d M
ln ln

ln

ln
, 21= D ( )

where we assume a fiducial bin width of Mln 0.2 ln 10D = , or
five bins per decade. If the bin has a true mean mass Mln b

measured with some uncertainty Mlns , then error in the
abundance is found via propagation of errors. One has

N M M
d N

d M
ln ln ln

ln

ln
22b M Mln ln b Mlns+ = D s+( ) ∣ ( )

M
d N

d M

d N

d M
ln

ln

ln

ln

ln
23M M Mln ln

2

2 lnb bs= D +
⎛
⎝⎜

⎞
⎠⎟∣ ∣ ( )

N M
d N

d M
ln ln

ln

ln
. 24M Mln

2

2 ln bs= + D ∣ ( )

Note that d N d Mln ln2 2 is the first derivative of the halo
mass function. The uncertainty on the abundance due to
uncertainty in the mass is

M
d N

d M
ln

ln

ln
. 25N M M Mln , ln

2

2 ln bs s= D ∣ ( )
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McClintock et al. (2019) found the statistical uncertainty on the
mean masses of clusters in the DES Y1 data to be 8%Mlns ~ .
Of course, this uncertainty will change between surveys and is
sensitive to lens source density, survey area, and survey depth.
We consider two contributions to the uncertainty in weak
lensing mass calibration: shape noise (the dominant source of
statistical uncertainty for the DES), and cluster sample variance

. 26M M Mln
2

ln
2,SN

ln
2,SVs s s= + ( )

The sample variance is easily understood:

M

N N

Var 0.4
, 27Mln

2,SV
2

s
l

= =
( ∣ ) ( )

where the scatter in mass at fixed richness is roughly 40%. This
term is subdominant to the shape noise, which is more
complicated. Melchior et al. (2017) found that M 4 3µ DS ,
where DS is the weak lensing profile. This means that the
uncertainty in the mass due to shape noise is given by

M AM N n , 28M c
2,SN 2 1 2 1 2 1s s= =DS

-( ) ( )

where Nc is the number of clusters, A is some constant, and n is
the lensing source density. However, because clusters at higher
redshift have fewer sources behind them, this term is redshift
dependent. In detail this dependence is complicated, but it will
generally resemble

n z n
z

z
exp

1

2
, 290

2

2
*

» -
⎛
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⎞
⎠⎟( ) ( )

where z* is a characteristic redshift where the local source
density peaks. For DES Y1, n0 is 6.3 arcmin−2. We found that
the parameters A h M0.7 10 arcmin22 1 1.5 2= ´ - -

[ ] and
z*=0.33 recovered the uncertainties of the DES Y1 masses
within 10%. In a generic mass bin at mass M for a given
survey, we can use these values to compute the shape noise
uncertainty using

AM

N n

z

z

6.3 arcmin
exp

1

2
. 30M

2,SN
1 2 2

0

2

2
*

s = -
- ⎛

⎝⎜
⎞
⎠⎟ ( )

The z* values for DES Y1, Y5, and LSST Y1 are 0.5, 0.6, and
8.5 respectively. The number of clusters in the bin N scales
with the survey area, and is calculated within a redshift slice of
Δz=0.15, the width in redshift of the cluster bins in
McClintock et al. (2019). The lens source densities for DES
Y5 and LSST Y1 are estimated to be 8.4 and 10 arcmin−2. The
survey areas for DES Y1, Y5, and LSST Y1 are 1514, 5000,
and 18000 deg2. The shape noise uncertainty in Mln is

MM Mln
SN SNs s= , which allows us to compute the total

uncertainty on the mass bin Mlns . From this we calculate the
total uncertainty on the abundance as

, 31N N N Mln
2

ln ,emu
2

ln ,
2s s s= + ( )

where Nln ,emus is the accuracy of the halo mass function
emulator. We require that adding the emulator uncertainty
increases the error budget for each survey by no more than
10%, so that 1.1N N Mln

2 2
ln ,
2s s= . We use this equation to derive

the calibration requirements shown in Figure 1.
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