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Abstract

The rapidly growing statistical precision of galaxy surveys has led to a need for ever more precise predictions of
the observables used to constrain cosmological and galaxy formation models. The primary avenue through which
such predictions will be obtained is suites of numerical simulations. These simulations must span the relevant
model parameter spaces, be large enough to obtain the precision demanded by upcoming data, and be thoroughly
validated in order to ensure accuracy. In this paper, we present one such suite of simulations, forming the basis for
the AEMULUS Project, a collaboration devoted to precision emulation of galaxy survey observables. We have run a
set of 75 (1.05 h−1 Gpc)3 simulations with mass resolution and force softening of h M3.51 10 0.3m

10 1´ W -
( )/

and 20 h−1 kpc,respectively, in 47 different wCDM cosmologies spanning the range of parameter space allowed
by the combination of recent cosmic microwave background, baryon acoustic oscillation, and Type Ia supernova
results. We present convergence tests of several observables including spherical overdensity halo mass functions,
galaxy projected correlation functions, galaxy clustering in redshift space, and matter and halo correlation
functions and power spectra. We show that these statistics are converged to 1% (2%) or to the sample variance of
the statistic, whichever is larger, for halos with more than 500 (200) particles, respectively, and scales of
r>200 h−1 kpcin real space or k∼3 hMpc−1in harmonic space for z�1. We find that the dominant source of
uncertainty comes from varying the particle loading of the simulations. This leads to large systematic errors for
statistics using halos with fewer than 200 particles and scales smaller than k∼4 hMpc−1. We provide the halo
catalogs and snapshots detailed in this work to the community athttps://AemulusProject.github.io.

Key words: large-scale structure of universe – methods: numerical – methods: statistical

1. Introduction

The era of precision cosmology from galaxy surveys is upon
us. Galaxy survey data sets have achieved constraining power on
a subset of cosmological parameters comparable to measure-
ments of the cosmic microwave background (CMB; Alam et al.
2017; Abbott et al. 2018), but unlike the CMB, these constraints
rely on the measurement and modeling of nonlinear structure. In
a very real sense, these analyses are already systematics limited,
disregarding significant portions of their data in order to mitigate
modeling uncertainties. For example, Abbott et al. (2018) limited
themselves to scales for which baryonic feedback and nonlinear
effects from galaxy biasing could be ignored. Alam et al. (2017),
presenting the final analysis of the BOSS galaxy redshift survey,
restricted their redshift space distortion measurements to
s>20 h−1 Mpcand k<0.15 hMpc−1in configuration and
Fourier space, respectively, to avoid uncertainties in modeling
the galaxy velocity field.

Analytic models of these effects for simply selected samples
are improving, but even the best models only claim to be
accurate to the percent level at k∼0.3 hMpc−1for matter and
halo power spectra before taking into account effects due to
hydrodynamics, feedback, and redshift space distortions (Perko
et al. 2016; Cataneo et al. 2017). Nonlinear effects are much
more difficult to avoid in the halo mass function (HMF), and
analytic predictions such as those in Press & Schechter (1974)
and Sheth & Tormen (1999) are only accurate at the ∼10% level

(Tinker et al. 2008). Depending on the observable, this level of
precision is either already a dominant source of error or will be
in the very near future (see, e.g., Tinker et al. 2012). While 1%
precision in observables is often quoted as a necessary goal, the
required precision on predictions for observables is often not this
stringent. For instance, McClintock et al. (2019) determined that
the precision required for the HMF in order for it to contribute
no more than 10% of the total uncertainty in cluster mass
calibration for upcoming surveys is 3% at its most demanding.
While analytic methods struggle with nonlinear structure

formation, a clear alternative exists in numerical simulations. In
the case of gravity, where we have a well-understood standard
theory described by general relativity, the effectiveness of
simulations is limited only by the coarseness of the discretiza-
tion allowed by currently available computers. Different
algorithms for solving for nonlinear structure growth in dark-
matter-only simulations have been shown to produce predic-
tions for the matter power spectrum that are converged at better
than the 1% level to k∼1 hMpc−1(Heitmann et al. 2009;
Schneider et al. 2016). It should be noted that these studies are
of relative convergence, whereas studies of absolute conv-
ergence to the true physical solution still have an open question
that likely depends on a better understanding of baryonic
physics, neutrinos, and the nature of dark matter itself. Because
of the relative successes of the aforementioned simulations,
almost all cosmological analyses involving galaxy surveys now
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use them in some form (Kitaura et al. 2016; Joudaki et al. 2018;
MacCrann et al. 2018).

While great strides have been made in improving their
computational efficiency, N-body simulations are still relatively
expensive. For example, the DS14_A simulation (Skillman
et al. 2014), one of the largest simulations run to date with a
simulated volume of (8 h−1 Gpc)3 and 1.07×1012 particles,
took approximately 400,000 node-hours, using approximately
two-thirds of the TITAN supercomputer for close to two days.
While this simulation approaches the volume of many ongoing
and upcoming galaxy surveys, it does not even resolve all of
the host halos of galaxies in a survey like DES.

Cosmological parameter constraints typically rely on
sampling schemes such as Monte Carlo Markov Chains in
order to explore parameter space. Modern analyses including
cosmological and nuisance parameters numbering in the tens
must sample on the order of millions of different cosmologies
to reach convergence. Running an N-body simulation at each of
these steps is not a prospect that will be achievable in the near
future; even when considering simulations smaller than
DS14_Ahus, there is a need for methodologies that can use
relatively few simulations to make robust predictions for the
full cosmological parameter space being constrained. Much of
the work in this area has been driven by the need for accurate
predictions of the matter power spectrum for weak-lensing
analyses. For example, the HALOFIT methodology (Smith et al.
2003; Takahashi et al. 2012) fit an analytic expression to a set
of N-body simulations in various cosmologies to obtain
predictions for the matter power spectrum accurate to 5% for
k<1 hMpc−1and 10% for 1 hMpc−1<k<10 hMpc−1.

Investigations into more advanced methodologies are
ongoing, typically combining algorithms for optimally sam-
pling a chosen cosmological parameter space and a method for
interpolating between the observables at the sampled cosmol-
ogies. This approach, dubbed cosmic emulation, was first
demonstrated for the matter power spectrum in Heitmann et al.
(2009). They showed convergence of their simulation results
with respect to a number of choices made in solving the N-body
problem, including mass resolution, force softening, and
simulation volume. This work has since been extended to the
Friends-of-Friends (FoF) HMF (Heitmann et al. 2016), galaxy
correlation function, and galaxy–matter cross-correlation func-
tion (Wibking et al. 2019), among other observables. Studies of
the convergence of these statistics are not as complete as those
for the matter power spectrum. Work toward validating the
convergence of these statistics is vital to ensuring the accuracy
of predictions built from simulations.

This type of validation is the primary concern of this work.
The simulations presented here form the basis for the first set of
emulators that is being built as a part of the AEMULUS project,
a collaboration focused on the emulation of galaxy survey
observables. The goal of the validation presented here is to
provide robust convergence estimates for the statistics in
question so that they may be properly accounted for in
emulators built from these simulations. Emulators for the HMF
and redshift space galaxy clustering using these simulations are
presented in McClintock et al. (2019) and Zhai et al. (2018),
respectively. Additionally, we hope to provide convergence
guidelines for future work that simulates the statistics
presented here.

In Section 2, we present our cosmological parameter space
and the Latin Hypercube (LH) algorithm used to sample from

it. In Section 3, we discuss our simulation framework. In
Section 4, we discuss the convergence of the observables we
emulate with respect to the choices made in our N-body solver.
In Section 5, we discuss issues related to halo finding and halo
definitions, and in Section 6, we compare our simulations to
existing emulators. In Section 7, we discuss our plans to release
these simulations to the public, and in Section 8 we conclude.

2. Cosmological Parameter Space

The goal of the parameter selection algorithm is to optimally
span a large-dimensional space with a limited number of
points. Our criterion for optimization is to maximize the
accuracy of any scheme to interpolate statistics between the
points, which requires the points to be as close to uniformly
spaced as possible, while covering as much of the space as
possible. We follow the technique outlined in Heitmann et al.
(2009), with minor modifications. The process begins with an
LH containing M=40 samples of our N=seven-dimensional
space. In an LH design, each of the N dimensions is divided
into M bins. In each dimension, each of the bins is selected
once with no repeats, thus guaranteeing the full range of each
parameter within the space is represented sparsely.
A random LH design is not optimally spaced, however.

Points can be clumped together, as shown in a two-dimensional
projection of our seven-dimensional space in the left-hand side
of Figure 2. To quantify the spacing of a given LH, for every
point in the space ,we calculate the distance to the closest point
in each two-dimensional projection of the space. The quantity
of interest is the sum of all minimum distances for all points in
all projections. The space is optimal when this quantity is
maximized, thus removing any clumping between points and
pushing the points to a uniform distribution. To accomplish
this, we use an iterative procedure that takes two points from
the sample and swaps values in one dimension. If this
swapping increases the quantity of interest, the swap is
accepted. If it does not, the swap is rejected. This procedure

Figure 1. A 50 h−1 Mpcthick slice through B25 with density deposition
performed as described in Kaehler et al. (2012).
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is iterated until convergence. The result of this procedure is
shown in the middle panel of Figure 2.

An LH design, by construction, creates a distribution of
points in an M-dimensional cube. However, we do have prior
knowledge on the distribution of cosmological parameters, and
we want the distribution of our points to follow the
degeneracies between parameters given current constraints.
We use the combination of CMB, baryon acoustic oscillations
(BAO), and supernovae (SNe). Specifically, we use the
CosmoMC chains produced in the cosmology analysis of the
BOSS DR11 BAO analysis (Anderson et al. 2014). Separate
chains were run for nine-year Wilkinson Microwave Anisotropy
Probe (WMAP) results (Hinshaw et al. 2013) and for Planck
2013 results (Planck Collaboration et al. 2014). Given the
differences in these CMB results, as well as our desire for our
simulations to span a larger volume of parameter space than
current constraints, we combine the chains from WMAP and
Planck. The eigenvalues and eigenvectors of the combined
chains are used to set the dimensions of the LH design. The
generic LH design has seven]dimensions, with points ranging
from [0, 1]. Each of these dimensions is an eigenvector of the
cosmological parameter space, and the range [0, 1] maps onto
[−4, 4]×σi, where σi is the eigenvalue of vector i. The right-
hand panel in Figure 2 shows the generic LH design projected
into cosmological parameter space, which now samples the 4σ
parameter space allowed by the aforementioned measurements.
In this example, we plot Ωm versus 100Ωb. In this projection,
the data points may appear somewhat clumped, but recall that
this is an angled projection of the LH. For reference, the 1σ and
2σ contours from the CMB+BAO+SN analyses are presented
for both WMAP and Planck. The sampling of our parameter
space that was used in the simulations presented in this paper is
shown in Figure 3.

3. N-body Simulations

There are three sets of simulations discussed in this work, all
run using the L-GADGET2 N-body solver, a version of
GADGET2 (Springel 2005) modified for memory efficiency
when running dark-matter-only simulations. The first of these
sets, which we dub “training simulations,” is a set of 40
(1.05 h−1 Gpc)3 boxes with 14003 particles, resulting in a mass
resolution of h M3.51 10 0.3m

10 1´ W -
( )/ . The cosmologies

of these simulations, listed in Table 1, are drawn from the

LH discussed in Section 2. These are run with a Plummer
equivalent force softening of 20h−1 kpc and a maximum time
step of MAX(Δln a)=0.025. We use second-order Lagrangian
perturbation theory (2LPT) initial conditions generated at
a=0.02 using 2LPTIC (Crocce et al. 2006) with input power
spectra as computed by CAMB (Lewis & Bridle 2002), taking
Ων=0. A slice through one of our simulations is shown in
Figure 1.
Each of these 40 simulations is initialized with a different

random seed. This is different from the approach taken in some
recent simulation suites designed for emulators (e.g., Garrison
et al. 2018), but McClintock et al. (2019) and Zhai et al. (2018)
showed that this enables our emulators to perform better than
the sample variance of our individual simulations, whereas
simulations using the same random initial amplitudes and
phases are guaranteed to perform only as well as the sample
variance of the chosen individual simulation volume. One
caveat to this is that methods requiring derivatives of statistics
with respect to cosmology may not perform well, due to this
choice. Simulations with initial conditions that fix the
amplitude of each mode to its expectation value rather than
randomly drawing amplitudes from a Rayleigh distribution, as
is proper for standard Gaussian initial conditions, have been
shown to significantly reduce the variance of many statistics in
the linear and semilinear regime without incurring systematic
biases (Angulo & Pontzen 2016; Chuang et al. 2018;
Villaescusa-Navarro et al. 2018). In the future, we will pursue
such methods, but they have not been used for the simulations
presented here. We save 10 snapshots at redshifts of z={3.0,
2.0, 1.0, 0.85, 0.7, 0.55, 0.4, 0.25, 0.1, 0.0}.
In order to test the accuracy of our emulators, we have also

run a set of seven test cosmologies using the same settings as
our training simulations. For each test cosmology, we have run
five simulations, each with different initial conditions, totaling
35 simulations. We will refer to these as “test simulations”
throughout. Five of these cosmologies were chosen to lie along
the eigenvector spanning the axis of degeneracy between σ8
and Ωm, and the other two were chosen to lie along the second
most important eigenvector, perpendicular to the first. The
cosmologies of these test simulations are listed in Table 2.
Additionally, we have run a set of simulations varying a

number of choices with respect to the L-GADGET2 N-body
solver, which we will refer to as “convergence test simula-
tions.” A few of these simulations were run using a number of

Figure 2. Left panel: two-dimensional projects of a random seven-dimensional Latin Hypercube (LH), with 40 points in total. Middle panel: the same LH, now
optimized for more uniform spacing between points. Right panel: the same LH as shown in the middle panel, but now rotated into the eigenspace defined by CMB
data. Contours are the WMAP9 and Planck13 joint constraints with BAO and supernovae.
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cosmologies, including the Chinchilla cosmology (Lehmann
et al. 2017) with (Ωm, h, Neff, ns, σ8, w)=(0.286, 0.7, 3.04,
0.96, 0.82, −1), which is not used for any of the test or training
boxes but is well within our cosmological parameter space. See
Table 3 for a summary of the simulations that we have used for
these tests.

The names of these simulations all begin with CT to denote
that they were run for convergence testing. The first number
following CT enumerates the N-body solver parameter set that
was used to run the simulation. Various sets of these
simulations were run with the same random seed for their
initial conditions. The sets with the same seed are demarcated
with the same last number in their name, e.g., CT00 and CT60.
When necessary, we distinguish between the different
cosmologies used by including them in the simulation name.
For example, CT00-T00 refers to the simulation run with our
fiducial N-body solver parameters using the first random seed
for its initial conditions in the T00 cosmology as listed in
Table 2.

We have chosen to use volumes of (400 h−1 Mpc)3 for the
CT simulations rather than the (1.05 h−1 Gpc)3 used for the
training and test simulations, as changing some of the settings
for convergence tests significantly increases the runtime of the
simulations. Using a smaller volume allows these simulations
to finish in a modest amount of time. We have mitigated the
smaller volumes by running four pairs of boxes, CT00, K, CT03
and CT40, K, CT43, in three different cosmologies, CHINCH-
ILLA, T00, and T04, for our particle-loading test as it is for this

test that we find our largest deviations from convergence, and
we wish to constrain these more precisely with better statistics.
We employ the ROCKSTAR spherical overdensity (SO) halo

finder (Behroozi et al. 2013) for all of our simulations.
ROCKSTAR employs a 6D phase-space FoF algorithm in order
to identify density peaks and their surrounding overdensities.
We have chosen to use M200b strict SO masses as our fiducial
mass definition, where strict refers to the inclusion of unbound
particles in the mass estimates of all halos. A discussion of this
choice is presented in Section 5. Other than enabling strict SO
masses, we have used the default ROCKSTAR settings, choosing
the ROCKSTAR softening length to be the same as that used in
the N-body solver and leaving on the particle downsampling
that ROCKSTAR performs in its initial construction of FoF
groups, as we find that this does not affect any of the
conclusions presented in this work. Additionally, all results
presented here use only host halos, i.e., halos that are not found
to lie within a halo with a higher maximum circular velocity.

4. N-body Convergence Tests

The sampling of the parameter space, the effective volume of
the training set, and the details of the emulators are all important
aspects in determining the final precision and accuracy of our
predictions. Equally important is that the observables that are
used to train the emulators are converged with respect to all
possible choices made when running the simulations. Otherwise,
there is a risk of biasing the predictions in ways that are difficult
to identify post hoc. For instance, comparison with other
predictions is a useful sanity check so long as they agree to

Figure 3. The contours show the 3σ CMB+BAO+SNIa constraints in our parameter space. The 40 training cosmologies and seven test cosmologies are shown in
black and red, respectively.
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within their purported precision as it is unlikely that both sets of
simulations have the same systematic biases, and so their
agreement indicates that both predictions are likely converged.
However, in the case where such comparisons disagree, it is

impossible to determine why unless detailed convergence tests
are conducted.
It should be noted again that all of the tests we perform are of

relative convergence and not absolute convergence. The

Table 1
The Cosmologies Used in Training Our Emulators, Deemed Training Cosmologies in This Paper

Name Ωb h
2 Ωc h

2 w0 ns log 1010 As H0 Neff

B00 0.0227 0.1141 −0.817 0.9756 3.093 63.37 2.919
B01 0.0225 0.1173 −1.134 0.9765 3.150 73.10 3.174
B02 0.0230 0.1087 −0.685 0.9974 3.094 63.71 3.259
B03 0.0227 0.1123 −0.744 0.9481 3.001 64.04 3.556
B04 0.0221 0.1063 −0.767 0.9651 3.119 65.05 2.664
B05 0.0207 0.1295 −1.326 0.9278 3.024 72.75 2.961
B06 0.0229 0.1115 −0.710 0.9706 3.016 62.70 2.706
B07 0.0228 0.1196 −0.867 0.9663 3.162 64.37 3.939
B08 0.0207 0.1238 −1.164 0.9491 3.147 69.40 3.599
B09 0.0213 0.1158 −0.831 0.9475 3.072 62.36 3.896
B10 0.0219 0.1290 −1.241 0.9610 3.050 72.09 4.236
B11 0.0226 0.1090 −0.861 0.9960 3.158 67.73 2.834
B12 0.0225 0.1168 −0.879 0.9540 3.048 65.38 2.876
B13 0.0219 0.1172 −1.120 0.9788 3.068 71.08 3.004
B14 0.0226 0.1271 −1.117 0.9724 3.094 68.73 2.749
B15 0.0215 0.1285 −1.303 0.9336 3.094 74.10 3.726
B16 0.0218 0.1207 −1.131 0.9662 3.014 70.07 3.769
B17 0.0223 0.1194 −1.248 0.9520 3.035 74.44 3.216
B18 0.0229 0.1157 −1.032 0.9533 3.020 70.75 4.279
B19 0.0224 0.1133 −1.092 0.9673 3.096 72.43 3.684
B20 0.0223 0.1225 −0.990 0.9529 3.120 67.06 3.386
B21 0.0236 0.1172 −0.866 0.9758 3.132 66.39 3.854
B22 0.0215 0.1210 −1.032 0.9586 3.072 68.06 2.621
B23 0.0227 0.1012 −0.566 0.9746 3.019 62.03 3.471
B24 0.0225 0.1103 −0.761 0.9589 3.144 63.03 4.151
B25 0.0209 0.1171 −0.948 0.9345 3.037 65.71 3.089
B26 0.0224 0.1192 −1.125 0.9443 3.128 71.76 2.791
B27 0.0214 0.1134 −0.965 0.9664 3.015 67.39 4.024
B28 0.0217 0.1318 −1.400 0.9586 3.147 74.77 3.811
B29 0.0223 0.1289 −1.236 0.9401 3.159 71.41 3.429
B30 0.0219 0.1239 −1.224 0.9552 3.118 73.43 4.066
B31 0.0212 0.1276 −1.382 0.9561 3.076 73.76 3.344
B32 0.0225 0.1128 −0.926 0.9495 3.043 68.40 3.981
B33 0.0234 0.1150 −0.875 0.9892 3.149 66.05 3.641
B34 0.0228 0.1222 −1.032 0.9500 3.107 69.07 3.131
B35 0.0234 0.1076 −0.613 0.9956 3.140 61.69 3.046
B36 0.0220 0.1213 −1.108 0.9674 3.179 70.41 3.301
B37 0.0229 0.1097 −0.849 0.9776 3.072 66.73 3.514
B38 0.0237 0.1150 −0.955 0.9766 3.054 69.75 4.109
B39 0.0217 0.1201 −0.941 0.9602 3.093 64.70 4.194

Note. Each has one realization with volume (1050 h−1 Mpc)3 and Npart=14003. Each uses the fiducial settings detailed in Section 3. In particular, they have mass
resolutions of h M3.51 10 0.3m

10 1´ W -
( )/ and force resolutions of 20 h−1 kpc.

Table 2
The Cosmologies Used in the Test Simulations

Name Ωb h
2 Ωc h

2 w0 ns log 1010 As H0 Neff

T00 0.0233 0.1078 −0.727 0.9805 3.039 63.23 2.950
T01 0.0228 0.1128 −0.862 0.9715 3.064 65.73 3.200
T02 0.0223 0.1178 −0.997 0.9625 3.089 68.23 3.450
T03 0.0218 0.1228 −1.132 0.9535 3.114 70.73 3.700
T04 0.0213 0.1278 −1.267 0.9445 3.139 73.23 3.950
T05 0.0218 0.1153 −1.089 0.9514 3.119 69.73 3.700
T06 0.0228 0.1203 −0.904 0.9736 3.059 66.73 3.200

Note. Each has five realizations, each with volume (1050 h−1 Mpc)3 and Npart=14003 using the fiducial settings detailed in Section 3. In particular, they have mass
resolutions of h M3.51 10 0.3m

10 1´ W -
( )/ and force resolutions of 20 h−1 kpc.
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reasons for this are twofold. First, we are knowingly leaving
out physics that we believe to be important at some level, such
as the effects of baryonic feedback on the matter distribution.
Additionally, we do not have an analytic solution toward which
we are measuring convergence even for the physics that we
have implemented, particularly in the nonlinear regime. There
is a growing literature on the possible lack of absolute
convergence in N-body simulations in this regime (van den
Bosch & Ogiya 2018; van den Bosch et al. 2018), but these
issues typically arise when considering dark matter substructure
within host halos. Constraining the statistics of substructure is
not the goal of the present work, and so we conduct no tests of
convergence of such statistics here.

4.1. Measurements

Below we describe our measurements of the following
observables:

(a) matter power spectrum, P(k),
(b) three-dimensional matter correlation function, ξmm(r),
(c) spherical overdensity HMF, N(M200b),
(d) three-dimensional halo–halo correlation function, ξhh(r),
(e) projected galaxy–galaxy correlation function, wp(rp), and
(f) monopole and quadrupole moments of the redshift space

galaxy–galaxy correlation function, ξ0(s), ξ2(s).

We briefly detail how we measure each of these statistics and
describe our convergence tests in the following subsections.

4.1.1. Matter Power Spectrum

The first statistic we will be interested in is the matter power
spectrum, P(k), which is given by

k k P k , 1k k,*d d dá ¢ ñ = ¢( ) ( ) ( ) ( )

where δ(k) is the Fourier transform of the matter overdensity
field x xd r r r= -( ) ( ( ) )/ ,

x k kd e
1

2
, 2k xi

3 òd
p

d= -( )
( )

( ) ( )·

and the angle brackets denote an ensemble average over
independent volumes, V. The power spectrum fully describes
the statistics of any Gaussian random field and as such is a
useful statistic for describing cosmological density fields,
which are still Gaussian at most scales until late times.

Because our simulations have periodic boundary conditions,
we can estimate the power spectrum using a Fast Fourier
Transform (FFT). First, we deposit the density field onto a
mesh of dimensions Nmesh

3 , where N L k2mesh box max p= ( )/
using a cloud-in-cell deposition, such that wavenumbers
k�kmax are sampled at or above their Nyquist rate. We take
kmax=5 hMpc−1. We then compensate for the mass-deposi-
tion window function and average the resulting 3D power
spectrum in bins of k, with dk L 2box p= / . All of these are
performed using the PYTHON package NBODYKIT (Hand et al.
2018). We do not perform any shot-noise subtraction, because
for the scales we are using, the standard V Npart/ correction is
small, and it is not clear that the correction should necessarily
take this form. Unless otherwise noted, this is the only statistic
for which we do not include error estimates. At the scales of
interest, the errors on P(k) are very small, and estimating them
via jackknife as we have done for our other measurements is
nontrivial, due to our use of an FFT to measure P(k).

4.1.2. 3D Matter Correlation Function

Because δ(x) is assumed to be a stationary random field, its
correlation function is given by the Fourier transform of its
power spectrum,

x x rr 3x d d= á + ñ( ) ( ) ( ) ( )

kd P k e
1

2
. 4k ri

3 òp
= -

( )
( ) ( )·

We estimate the 3D matter correlation function from our
boxes by jackknifing the Landy–Szalay estimator (Landy &
Szalay 1993)

r
DD DR RR

RR

2
5x =

- +ˆ ( ) ( )

where DD, DR, and RR are particle–particle, particle–random,
and random–random pair counts normalized by the total
number of possible pairs in a given radial bin. We use 27
jackknife regions and downsample the particle distribution by a
factor of 100, which we have checked does not affect our
results.
Despite the simple relation between the matter power

spectrum and 3D correlation function, we check the conv-
ergence of both since measurement errors take different forms
in the two statistics, e.g., in configuration space, correlations
functions are formally only affected by shot noise at r=0,

Table 3
Summary of the Boxes Run for Convergence Tests

Name Cosmology Nrealizations Lbox (h
−1 Mpc) mpart (h

−1 Me) ò (h−1 kpc) aln maxD astart α η

CT0 Chinchilla, T00, T04 3×4 400 3.30 1010
0.286

m´ W( ) 20 0.0250 0.02 0.002 0.0250

CT1 Chinchilla 1 400 3.30×1010 20 0.0250 0.01 0.002 0.0250
CT2 Chinchilla 1 400 3.30×1010 10 0.0250 0.02 0.002 0.0250
CT3 Chinchilla 1 400 3.30×1010 20 0.0250 0.02 0.001 0.0250
CT4 Chinchilla 1 400 3.30×1010 20 0.0125 0.02 0.002 0.0250
CT5 Chinchilla 1 400 3.30×1010 20 0.0250 0.02 0.002 0.0125
CT6 Chinchilla, T00, T04 3×4 400 4.12 109

0.286
m´ W( ) 20 0.0250 0.02 0.002 0.0250

CT7 T00, K, T06 7 3000 2.49 1012
0.286

m´ W( ) 20 0.0250 0.02 0.002 0.0250

Note. Columns are simulation name, cosmology, number of different initial condition realizations, box side length, particle mass, Plummer equivalent force softening,
maximum time step, starting scale factor, force error tolerance, and time integration error tolerance.
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whereas for power spectra the correction affects all wavenum-
bers. Additionally, emulators built from these boxes may
choose to use one or the other quantity, and determining the
scales or wavenumbers where one of these statistics is
converged using the other is nontrivial. All pair counting was
done using CORRFUNC (Sinha & Garrison 2017).

4.1.3. Spherical Overdensity HMF

In modern theories of ΛCDM galaxy formation, all galaxies
are assumed to form within dark matter halos. As such, making
converged predictions for the abundance of dark matter halos is
of great importance for accurately predicting galaxy statistics.
In particular, McClintock et al. (2019) used the simulations
presented here to build an emulator for the abundance of SO
dark matter halos using Δ=200b, and so we focus our
convergence tests on the statistic used in that work, namely the
total number of halos per bin in Mlog10 200b( ), N(M200b).
Additionally, we are interested in only so-called host halos and
not subhalos. This is because the galaxy models we employ (in,
e.g., Zhai et al. 2018) are based on the Halo Occupation
Distribution (HOD) formalism, which has no need for subhalo
information, and because the first applications of our HMF
emulator will be cosmology constraints using cluster number
counts. We estimate N(M200b) and its errors in our simulations
using a jackknife estimator with 27 jackknife regions.

4.1.4. 3D Halo Correlation Function

The other diagnostic we will use to assess the convergence
of our halo populations is the 3D halo correlation function,
ξhh(r). Because the clustering of halos is biased with respect to
the matter distribution due to their preferential formation in
overdense regions of the matter distribution, convergence of
ξhh at a particular scale, r, does not directly follow from
convergence of ξmm at the same scale, and thus it is important
to test for convergence of these separately.

For a discrete field, the two-point correlation function
measures the excess probability, relative to a Poisson
distribution, of finding two halos at the volume elements dV1

and dV2 separated by a distance r (Peebles 1980):

dP n r dV dV1 , 612
2

1 2x= +¯ [ ( )] ( )

where n̄ is the mean number density of the sample. To estimate
ξhh, we again jackknife the Landy–Szalay estimator given by
Equation (5), using 27 subvolumes. The measurements of
ξhh(r) presented here are for halos with M200b>1012 h M1-

,
except where otherwise noted.

4.1.5. Galaxy Correlation Functions

In order to calculate galaxy clustering, we employ 10 BOSS
massive galaxy sample-like HOD models and populate halos
with a galaxy number density of 4.2×10−4 (h−1 Mpc)−3 at
z=0.55. The typical mass scale Mmin for the dark matter halo
at which half of the halos have a central galaxy is in the range

M h M12.9 log 13.5min
1< <-

[ ] , and the scatter of halo mass
at fixed galaxy luminosity Mlogs ranges from 0.05 to 0.5. These
models have satellite fractions ranging from 10% to∼13% and
galaxy biases from 2.0to ∼2.13. Satellites are assumed to
have a Navarro–Frenk–White profile (Navarro et al. 1996), and
their velocity dispersion is assumed to be independent from the
position within the halo. More details of this HOD model can
be found in Zhai et al. (2018).

The correlation function of the resulting galaxy catalogs is
described by the projected correlation function wp and redshift
space multipoles ξl. The former is used to mitigate redshift
space distortions, probing the real space clustering signal, while
the latter can be calculated via Legendre decomposition at a
given order l. In the calculation of wp, the integral along the
line-of-sight direction is truncated at 80 h−1 Mpc, which is
large enough to include most of the correlated pairs and
produce a stable result. For ξl, we perform the decomposition
up to l=2 to get the redshift space monopole and quadrupole.
Clustering measurements are presented at scales from 0.1 to
50 h−1 Mpcand averaged over 10 random realizations of each
of the 10 HOD models.

4.2. Convergence Tests

Having described the statistics for which we will check
convergence, we now report on the tests that we have
performed as well as their results.

4.2.1. Initial Conditions

Since our N-body simulations do not start at a=0 ,we must
justify our choice of initial conditions. Two decisions must be
made: (1) which analytic prescription to use to generate the
initial density and velocity fields and (2) what epoch to
generate the initial conditions. For the first, we use 2LPT. For
the second, care must be taken to ensure that the analytic
treatment used to generate the initial conditions remains
accurate for all modes in the simulation until the scale factor
at which we start the N-body solver. To ensure this, we have
chosen a starting time of a=0.02 (z=49). In this section, we
show that our observables are robust to this choice by
comparing measurements made in a fiducial simulation with
the same specifications used in our emulator suite, CT00-
CHINCHILLA, to a simulation that has been run with a starting
scale factor of a=0.01 (z=99), CT10. It should be noted
again that, unless otherwise stated, all convergence tests
presented here vary one parameter at a time from the fiducial
parameters used for our training and test simulations.
For this test and all following tests, we will only report on

deviations from 1% convergence, which exceed 1σ in
significance, although we caution that convergence can only
be claimed at the 1% level with 68% confidence if the 1σ error
bars plotted in each panel fall completely within the gray
bands. For this test, a few statistics deviate from convergence
by more than this as can be seen in Figure 4. For M200b<1013

h M1-
, the HMF deviates from convergence. This mass would

fall in the lowest mass bin used in McClintock et al. (2019) and
is still within the range of halo masses used in HOD models in
Zhai et al. (2018). We also find deviations from convergence
approaching 1σ in wp for ∼r<300 h−1 kpc, P(k) for
k∼4 hMpc−1at z=0, and ξhh(r) for r�1 h−1 Mpc. The
largest scale data point of ξmm(r) also deviates from 1%
convergence for z=1, but this is likely a statistical fluctuation
given the convergence of P(k) at large scales.
Possible explanations for the observed deviations from

convergence are inaccuracies in 2LPT at these scales in
describing nonlinear evolution between 0.01<a<0.02, or,
somewhat more likely, this is a manifestation of the
discreteness effects discussed in Garrison et al. (2018). If the
latter is the case, then the simulation initialized at a=0.01 is
actually less accurate than our fiducial simulation as it suffers
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from these discreteness effects for a longer period of time. We
do not investigate these possibilities further in this work as
these inaccuracies are subdominant to the inaccuracies in our
simulations, due to particle loading. Future work that we are
pursuing with higher resolution simulations will require
revisiting these questions.

4.2.2. Force Softening

When solving the N-body problem as an approximation to
collisionless dynamics, one must employ a so-called force
softening in order to mitigate the effects of unphysical two-
body interactions. In L-GADGET2, this is done by representing
the single particle density distribution as a Dirac delta function
convolved with a spline kernel (Monaghan & Lattanzio 1985)

x xW , 2.8d =( ) (∣ ∣ ), where W(r) is given by a cubic spline.
Using this kernel, the potential of a point mass at r=0 for

nonperiodic boundary conditions is given by −Gm/ò. It is this
ò that we refer to as the force softening length. Typically, a
smaller ò yields equations that are closer to those that govern
the true universe, but decreasing ò by too much at fixed mass
resolution will lead to undesirable two-body interactions as
mentioned above. There is extensive literature on convergence
of various quantities with respect to force softening length
(Power et al. 2003, e.g.), but for completeness we investigate

this convergence in the context of the exact statistics that we
plan to measure and emulate with this simulation suite.
For our fiducial simulations, we have set ò=20 h−1 kpc,

and for this convergence test we have run an additional
simulation, CT20 with ò=10 h−1 kpc. The results of the
comparison between our fiducial simulation, CT00-Chinchilla,
and CT20 can be found in Figure 5. The only statistic that
deviates from convergence by more than 1%, or sample
variance, is ξmm(r) for r<200 h−1 kpc. P(k) is converged to
the 1% level for the scales measured here, but by
k∼3 hMpc−1is showing systematic deviations from perfect
convergence. This is consistent with the findings of Heitmann
et al. (2010), although they only consider ò>25 h−1 kpc. The
deviations seen in ξmm and P(k) do not appear to have a
significant effect on other statistics.

4.2.3. Absolute Force Error Tolerance

Another parameter that governs the accuracy of the
gravitational force calculations is how deeply to walk the
octree used to partition space when summing the small-scale
contributions to the gravitational force on each particle. This is
typically referred to as the cell-opening criterion, as it is used to
determine whether or not a cell in the tree should be “opened”
and traversed. We use the standard L-GADGET2 relative
opening criterion, which opens a cell containing mass M,

Figure 4. Comparison of a number of observables from CT00-CHINCHILLA, a simulation with our fiducial starting scale factor, a=0.02, and CT10, a simulation with a
starting scale factor of a=0.01. The gray band in all figures denotes 1% accuracy. All error bars are calculated via jackknife estimation using the fractional
differences in the statistics so as to null sample variance because these simulations are run with the same initial conditions. (a) Matter power spectrum. (b) Matter
correlation function. (c) Halo mass function, where the hatched region corresponds to halos with fewer than 200 particles. (d) Halo–halo correlation function for
M200b>1012 h M1-

. (e) Galaxy projected correlation function averaged over 10 realizations of 10 different HODs. (f) Redshift space monopole and quadrupole for
the same HODs.
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where aold∣ ∣ is the magnitude of the acceleration of the particle
under consideration in the last time step, and α is a free
parameter allowing the tuning of the accuracy. In general, a
decreasing α leads to smaller errors in force computation but
greater runtime as more nodes in the tree must be opened per
time step. Our fiducial runs use α=0.002.

In order to test that our results are converged with respect to
this choice, we have run an additional simulation, CT30, with
α=0.001. We find no significant deviations from conv-
ergence, as can be seen in Figure 6.

4.2.4. Time Stepping

Another significant choice that must be made in the L-
GADGET2 algorithm is the maximum allowed time step. The
time step for the leapfrog integrator that L-GADGET2 uses is
determined by a a aln min ln , 2max hD = D( ) [ ( ) ∣ ∣ ], where η
is the free parameter determining integration error tolerance.
Typically, Δln(a)max sets the time step at early times when
densities are low, and the a2 h ∣ ∣ criterion sets the time step
in collapsed regions at late times and thus is important in
dictating the convergence of halo density profiles (Power et al.
2003).

We have run additional simulations in order to check
convergence with respect to time-stepping criteria. In CT40,
Δln(a)max=0.0125, and in CT50, η=0.0125, half of their
respective values for our fiducial simulation, CT00. Compar-
isons of the same measurements detailed in Section 4.1
between CT00-CHINCHILLA and CT40 are shown in Figure 7.
No significant deviations are found. The same comparisons
were made between CT00-CHINCHILLA and CT50 and were
found to be nearly identical, and so we have not included them
for conciseness.

4.2.5. Particle Loading

The N-body algorithm solves for the evolution of a
discretization of the phase-space distribution function of dark
matter. Because this phase-space distribution is fundamentally
continuous, at least on macroscopic scales, an important
parameter governing the accuracy of the algorithm is the
number of particles used to sample this distribution function.
For the following tests, we have run a set of simulations, CT60,
K, CT63, in three different cosmologies, CHINCHILLA, T00, and
T04, where we have doubled the number of points with which
we sample each spatial dimension, increasing the mass
resolution by a factor of 8 from our fiducial settings. Results
for the comparison of these simulations with our fiducial set in
the Chinchilla cosmology can be found in Figure 8.
The mass function is converged to within 1%, or statistical

precision, whichever is larger, for halos that are resolved with
500 particles or more. For masses below this, we observe

Figure 5. Convergence tests with respect to force softening. Observables measured from a simulation with our fiducial parameters, CT00-CHINCHILLA, are compared
to CT20, a simulation with half the force softening: ò=10 h−1 kpc. Subpanels are the same as in Figure 4.
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varying degrees of deviation from convergence, which depend
to good approximation on just the number of particles that the
halo is resolved with. This can be seen in Figure 9, which
demonstrates that bins in particle number show similar
behavior for all redshifts except for very low particle numbers
at high redshift. Only one cosmology is plotted, but a similar
trend holds in the other two cosmologies, despite the three
cosmologies spanning a large range in σ8 and Ωm. We have fit
the following function to the average of these residuals over
redshift in order to characterize and correct for them in other
works:

N M N M

N M

N N
exp

log log
,

8

fid m

m
N

200b 200b
8

200b
8

10 part 10 0

log

part

part
10

s
-

= -
- -( ) ( )

( )
( )

( )

where Npart is the number of particles corresponding to M fid
200b,

the halo mass measured in our fiducial simulations. We find
log10N0=0.25±0.13 and 0.557 0.046Nlog10

s =  .
To higher order, the deviations from convergence appear to

be dependent on the local logarithmic slope of the mass
function, d N d Mlog log10

fid
10 200bG = / , with the worst devia-

tions occurring at low particle number and very steep slopes.
This can be seen in Figure 10. Here, we have measured the
deviations of our fiducial simulations from convergence as a
function of particle number and Γ, where Γ is determined by
fitting a quartic spline to N(M200b) in the CT0 simulations at all
redshifts and taking its logarithmic derivative. We have also

interpolated these measurements in order to make the trends
more obvious. Above about 1000 particles, the deviations from
convergence of the mass function are less than 1% for all
slopes. Below this particle number, there is a trend in error with
Γ, leading to the larger errors seen at high redshift in Figure 9.
For these reasons, we caution against using the correction as
determined above for halos with particle numbers less than
1000 when Γ<−2.
The deficit of halos that we find in our fiducial simulations

compared to the CT6 simulations cannot be explained by the
increased Poisson random noise in the mass estimates, as this
would lead to an overabundance of halos at a given mass, due
to the negative slope of the mass function in a manner
analogous to the Eddington bias. Instead, the observed deficit
suggests that a bias is being introduced in the density field,
which is clear from the deviations observed in P(k), such that
low-mass halos are less likely to form in lower resolution
simulations.
These errors also propagate into other observables involving

halo mass. For instance, ξhh deviates from convergence by
7.5% when using all halos with M200b>1012 h M1-

, but
quickly converges as a function of mass as can be seen by the
fact that halos with M200b>1012.5 h M1-

only deviate by 3%
from the simulations with higher particle loading. Mass cuts
above this have noisy ξhh measurements, and so we cannot
make precise statements about their convergence. The galaxy
correlation functions are less sensitive to mass resolution at the
low-mass end because our HODs are tuned to match the BOSS

Figure 6. Convergence tests with respect to force error tolerance. Observables measured from a simulation with our fiducial parameters, CT00-CHINCHILLA are
compared to CT30, a simulation with half the force error tolerance: α=0.002. Subfigures are the same as in Figure 4.
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massive galaxy sample. This can be seen in Figures 8(e) and
(f), where wp is converged at the 1%–2% level, with the
redshift space measurements performing only slightly worse.
ξmm is converged, while P(k) deviates from convergence for
z=0 above k∼1.5 hMpc−1, with a maximal deviation of
about 2% at k∼3 hMpc−1. The deviations from convergence
for P(k) are consistent with those found in Schneider et al.
(2016): ∼1% deviations from convergence for P(k) at
k∼1hMpc−1for an Lbox=512, Npart=5123 simulation.

4.2.6. Finite Box Effects

It is currently beyond the realm of possibility to simulate the
entire observable universe at high-enough resolution to be
useful. Instead, the common practice in cosmological simula-
tions is to assume periodic boundary conditions with a
fundamental mode that is much larger than the scales of
interest for the problem at hand. One effect of doing this is that
modes larger than the fundamental mode of the box are not
included in the growth of structure. Because gravitational
collapse is a nonlinear process, the growth of small-scale
structure couples to large-scale growth, and thus missing large
variances can cause inaccuracies and alter sample variance at
smaller scales. Additionally, because our simulations are
periodic, only discrete modes, k i j k L2 , , ,boxp= ( )/ where
i j k, , Î , are included in the initial conditions. In order to test
the effects of these approximations, we have run a set of much
larger, lower resolution simulations, CT70, K, CT76, at the same

cosmologies as our test simulations, where we have
(5 h−1 Gpc)3 for each cosmology to compare with. The results
of the comparison for the T04 cosmology are shown in
Figure 11; the other cosmologies show nearly identical results.
Because the CT7 simulations have worse mass resolution

than our test simulations, the analysis in Section 4.2.5 indicates
that there should be residual effects in this comparison, due to
mass resolution. In order to mitigate the differences arising
from mass resolution, we have applied the correction in
Equation (8) to both sets of measurements. We find
convergence to within sample variance of the test boxes for
all masses at both z=0 and z=1, although this is
significantly larger than the percent level at z=1 for all
masses shown here. We also compared ξmm(r) and found no
deviations from convergence for r<100 h−1 Mpc.

5. Halo Finding

In this section, we discuss the sensitivity of our results to
choices made with regard to halo finding. We have defined
dark matter halos as spherical structures with overdensities of
200 times the background density. This choice is relatively
arbitrary, having its basis in simple spherical collapse models
that have been shown to be imprecise compared to modern
cosmological standards. As such, we discuss the possible
impacts that this definition might have on cosmological results
obtained from emulators built upon these simulations. Note that
we consider the choice of halo finder and the settings used in

Figure 7. Convergence tests with respect to maximum time step. Observables measured from a simulation with our fiducial parameters, CT00-CHINCHILLA are
compared to CT40, a simulation with half the maximum time step: aln maxD ( ) =0.0125. Subfigures are the same as in Figure 4.
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that halo finder to be part of the mass definition, and as such we
do not consider the effects of different halo finders separately.
In the case of using galaxy clustering to constrain

cosmology, there is extensive literature on how the choice of
halo definition can impact and possibly bias the inferred
cosmology. Much of this literature has focused on the effect of
secondary parameters on the clustering signals of halos at fixed
mass (e.g., Gao et al. 2005; Wechsler et al. 2006; Chue et al.
2018; Mao et al. 2018). This effect propagates differently into
galaxy clustering depending on which proxy is then used to
assign galaxies to halos (Reddick et al. 2013; Lehmann et al.
2017) and can lead to biases in inferred HOD parameters when
ignored (Zentner et al. 2014). Whether these effects lead to
biases in inferred cosmology when using HODs and whether
these biases can be mitigated through extensions to the HOD
model are still open questions.
In the case of the HMF, the situation is equally complicated.

We do not directly measure the HMF, unlike the galaxy
correlation function, but rather some distribution of observables
such as cluster richness or X-ray temperature. In order to
constrain cosmology, a mass–observable relation (MOR) must
be obtained, and the calibration of this MOR must also assume
a halo mass definition. It is imperative that the definition used
when constraining the MOR and the definition used for the
HMF be the same in order to obtain unbiased cosmological
constraints. If the scatter in the MOR is smaller for a particular

Figure 8. Convergence tests with respect to mass resolution. Subpanels are the same as in Figure 4.

Figure 9. Deviations of the mass functions measured in simulations using our
fiducial parameters from simulations with higher mass resolution as a function
of redshift. The line is a fit to all of these points in addition to the points for the
other two cosmologies that are not shown in this figure.
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mass definition, that definition will yield tighter constraints, but
a study of the halo mass definition that minimizes scatter in the
MOR is beyond the scope of this paper. A more practical
reason for our choice of Δ=200b is that it makes the typical
radii of cluster mass halos, ∼0.5–2 h−1 Mpc, significantly
larger than the force softening lengths used in our simulations.

6. Comparison with Other Emulators and Linear Theory

Having internally validated our simulations, we now
compare our measurements to those obtained in other works.
Unfortunately, the most precise determination of the matter
power spectrum available to date, the Mira–Titan universe
emulator (Heitmann et al. 2016; Lawrence et al. 2017), does
not cover the same parameter space as our simulations. In
particular, they do not include Neff in their parameter space, and
varying this can lead to deviations in P(k) on the order of
∼10%, much greater than the precision at which such a
comparison would be relevant. Instead, we have compared our
simulations to predictions from the widely used HALOFIT
algorithm (Smith et al. 2003; Takahashi et al. 2012), which
does span our parameter space. Our simulations are not large
enough in volume for precision emulation of the matter power
spectrum, but nevertheless we can compare our measured
matter power spectra to the HALOFIT predictions for our
cosmologies as both an external validation of our simulations
and as a further consistency check for the HALOFIT algorithm.
The results of this comparison can be found in Figure 12.

Error bars in this figure correspond to the variance of the
deviations of our 40 training simulations from HALOFIT. We
find better than 1% agreement in the mean deviation until
k∼0.3 hMpc−1, but observe maximum errors close to 5%,
consistent with the HALOFIT internal error estimation in
Takahashi et al. (2012). For scales smaller than
k=1 hMpc−1,we find large deviations of up to 12%, which
are likely due to a combination of inaccuracies in HALOFIT and
resolution effects in our simulations. The maximum errors that
we observe for 0.1<k<1 are slightly smaller than those
reported in Heitmann et al. (2014), but this may be attributable
to the differences in the parameter spaces spanned by the two
sets of simulations. In future work, we will construct our own

Figure 11. Comparison of the average mass function over the five realizations
of T04 with that measured in CT7-T04. The top panel shows the mass functions,
where the points are measured from T04 and the lines are measurements from
CT72-T04. The bottom panel shows the fractional difference of the mass
functions between these simulations. These measurements are consistent with
no finite box effects.

Figure 12. Comparison of the 40 simulation boxes to the Takahashi HALOFIT.
The vertical black line demarcates the wavenumber where we expect the effects
of mass resolution to become important at the >1% level. Agreement is to
within the reported HALOFIT accuracy.

Figure 10. Deviations of the mass functions measured in simulations using our
fiducial parameters from simulations with higher mass resolution as a function
of particle number and logarithmic slope of the mass function. A clear trend
can be seen with the logarithmic slope of the mass function for Npart<1000.
Black lines show the logarithmic slopes of mass functions measured in the
CT00-T00 simulation for different redshifts. The solid black region is beyond
where we have any data and so we exclude it from this plot.
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emulator for the matter power spectrum in order to facilitate a
direct comparison with the Mira–Titan emulator.

In Figure 13, we test our simulations’ ability to reproduce
linear growth on large scales. To do this, we measure P(k) in
the initial conditions of each simulation and at z=0, 1, and 3
for each of the 40 training simulations. We then take the ratio
P k z P k z, , 49=( ) ( )/ and find the fractional difference
between this and D z D z 49=( ) ( )/ , where D(z) is the linear
growth factor for each cosmology at redshift z. Because our
initial conditions reproduce linear theory by definition, on large
scales this fractional difference equals the accuracy to which
our N-body solver reproduces linear theory. As shown in
Figure 13, we find about a 1% discrepancy between our
simulations and linear theory that is relatively independent of
redshift and cosmology. The error bars in that figure are the
variance of this measurement over our 40 simulations. There is
a mild evolution to larger discrepancies at lower redshifts,
which is significant with respect to the standard error on the
mean of this quantity averaged over all of our simulations.

7. Data Release

Upon publication of this article, we are making the
simulations described here available upon request. This
includes the initial conditions, the particle snapshots and halo
catalogs at all 10 redshifts described in Section 3, and any
measurements used in this paper or McClintock et al. (2019)
and Zhai et al. (2018).

We will make the aforementioned data products freely
downloadable athttps://AemulusProject.github.io at the time
this study and its companion papers are published.

8. Discussion and Conclusions

We have presented a new suite of N-body simulations for
emulating cosmological observables. The cosmologies of these
simulations were sampled from the wCDM 4σ allowed CMB

+BAO+SN parameter space using an orthogonal LH. We
investigated the convergence of the following observables with
respect to choices made in the L-GADGET2 N-body solver:

matter power spectrum, P(k),
three-dimensional matter correlation function, ξmm(r),
spherical overdensity HMF, N(M200b)
three-dimensional halo–halo correlation function, ξhh(r),
projected galaxy–galaxy correlation function, wp(rp), and
monopole and quadrupole moments of the redshift space
galaxy–galaxy correlation function, ξ0(s), ξ2(s).

We conclude that our observables are converged to 1%
accuracy or to the sample variance of our measurements,
whichever is larger, with respect to choices made in time
stepping and force resolution. Choices with respect to initial
conditions lead to minor deviations from 1% convergence for
halos resolved with fewer than 200 particles, although further
investigation of the source of this discrepancy will be
investigated in future work. Our choice of force softening
leads to deviations from 1% convergence for scales
r<200 h−1 kpc.
Particle loading is by far the parameter to which our

observables are most sensitive. For halos with greater than 500
particles, we also find convergence at better than the 1% level,
or sample variance, but for masses smaller than this, deviations
from convergence due to insufficient particle loading increase
rapidly. Halos with more than 200 particles, like those used in
McClintock et al. (2019), are still converged to better than
2.5%, or sample variance. We have shown that this deviation is
largely a function of particle number alone, and have fit this
dependence and applied it to build the emulator in McClintock
et al. (2019). Additional tests in that study using even higher
resolution simulations provide more evidence that this correc-
tion is satisfactory for our needs.
We have shown that our HMF predictions are not affected by

finite box effects to the precision allowed by sample variance in
our test boxes. At z=0, sample variance is smaller than 1%
for M200m4×1014 h M1-

. The study of this effect in the
current work is limited by our inability to use the same initial
conditions for the different box sizes necessary for this test, as
was done for the rest of the internal convergence tests detailed
in this work. As such, these tests are limited by the sample
variance in our test boxes, which is greater than percent level
for Me�4×1014Me and z>0. Future efforts are required
to ensure that observables are indeed converged with respect to
simulation size to the level needed for upcoming surveys.
The matter power spectra in our simulations are consistent

with those predicted by the HALOFIT methodology to within
their reported errors, but we are unable to compare to the Mira–
Titan emulator as our simulations use a different cosmological
parameter space. We also show that our simulations reproduce
linear growth on the largest scales available in our simulations
to 1% accuracy. Tests of this nature are of the utmost
importance, and continued work in making them is vital to
ensure that emulators of this kind are put to their full use in
upcoming analyses.
The work presented here is just the beginning of our effort to

contribute high-precision and -accuracy simulations and
emulators to the community. Future work will extend our
simulation suite significantly, especially with higher resolution
simulations that are suited for use with more complete galaxy
formation models. Additionally, we plan to expand our

Figure 13. Comparison of the growth factor of our 40 training simulation
boxes to that predicted by linear theory. Errors are the standard deviation of this
measurement computed over all 40 simulations. We find a discrepancy of 1%
on the largest scales measured in our simulations that is nearly independent of
cosmology and redshift, suggesting that our simulations reproduce linear
theory at this level.
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parameter space by including more physics such as neutrino
masses, and by expanding the limits of the parameters sampled
to include more volume away from CMB+BAO+SN con-
straints. This is important, as upcoming analyses will attempt to
diagnose the tension between different data sets in addition to
combining constraints from many different experiments.

The sharing of resources between simulators and the
exchange of expertise between simulators, theorists, and
observers will be vital in attaining the best possible outcomes
for the next generation of surveys. Only a concerted effort from
many groups in the domain of cosmic emulation over the next
decade will help ensure that stage IV cosmological surveys are
not limited by modeling systematics.
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