416 research outputs found

    Predicting Outcome in dogs with Primary Immune-Mediated Hemolytic Anemia: Results of a Multicenter Case Registry

    Get PDF
    BACKGROUND: Outcome prediction in dogs with immune‐mediated hemolytic anemia (IMHA) is challenging and few prognostic indicators have been consistently identified. OBJECTIVES: An online case registry was initiated to: prospectively survey canine IMHA presentation and management in the British Isles; evaluate 2 previously reported illness severity scores, Canine Hemolytic Anemia Score (CHAOS) and Tokyo and to identify independent prognostic markers. ANIMALS: Data from 276 dogs with primary IMHA across 10 referral centers were collected between 2008 and 2012. METHODS: Outcome prediction by previously reported illness‐severity scores was tested using univariate logistic regression. Independent predictors of death in hospital or by 30‐days after admission were identified using multivariable logistic regression. RESULTS: Purebreds represented 89.1% dogs (n = 246). Immunosuppressive medications were administered to 88.4% dogs (n = 244), 76.1% (n = 210) received antithrombotics and 74.3% (n = 205) received packed red blood cells. Seventy‐four per cent of dogs (n = 205) were discharged from hospital and 67.7% (n = 187) were alive 30‐days after admission. Two dogs were lost to follow‐up at 30‐days. In univariate analyses CHAOS was associated with death in hospital and death within 30‐days. Tokyo score was not associated with either outcome measure. A model containing SIRS‐classification, ASA classification, ALT, bilirubin, urea and creatinine predicting outcome at discharge was accurate in 82% of cases. ASA classification, bilirubin, urea and creatinine were independently associated with death in hospital or by 30‐days. CONCLUSIONS AND CLINICAL IMPORTANCE: Markers of kidney function, bilirubin concentration and ASA classification are independently associated with outcome in dogs with IMHA. Validation of this score in an unrelated population is now warranted

    Unique reporter-based sensor platforms to monitor signalling in cells

    Get PDF
    Introduction: In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. <p/>Methods: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. <p/>Findings: We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. <p/>Conclusions: We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters

    Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture

    Get PDF
    This experiment was designed to study three determinant factors in decomposition patterns of soil organic matter (SOM): temperature, water and carbon (C) inputs. The study combined field measurements with soil lab incubations and ends with a modelling framework based on the results obtained. Soil respiration was periodically measured at an oak savanna woodland and a ponderosa pine plantation. Intact soils cores were collected at both ecosystems, including soils with most labile C burnt off, soils with some labile C gone and soils with fresh inputs of labile C. Two treatments, dry-field condition and field capacity, were applied to an incubation that lasted 111 days. Short-term temperature changes were applied to the soils periodically to quantify temperature responses. This was done to prevent confounding results associated with different pools of C that would result by exposing treatments chronically to different temperature regimes. This paper discusses the role of the above-defined environmental factors on the variability of soil C dynamics. At the seasonal scale, temperature and water were, respectively, the main limiting factors controlling soil CO2 efflux for the ponderosa pine and the oak savanna ecosystems. Spatial and seasonal variations in plant activity (root respiration and exudates production) exerted a strong influence over the seasonal and spatial variation of soil metabolic activity. Mean residence times of bulk SOM were significantly lower at the Nitrogen (N)-rich deciduous savanna than at the N-limited evergreen dominated pine ecosystem. At shorter time scales (daily), SOM decomposition was controlled primarily by temperature during wet periods and by the combined effect of water and temperature during dry periods. Secondary control was provided by the presence/absence of plant derived C inputs (exudation). Further analyses of SOM decomposition suggest that factors such as changes in the decomposer community, stress-induced changes in the metabolic activity of decomposers or SOM stabilization patterns remain unresolved, but should also be considered in future SOM decomposition studies. Observations and confounding factors associated with SOM decomposition patterns and its temperature sensitivity are summarized in the modeling framework

    Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape

    Get PDF
    Citation: Leys, B. A., Commerford, J. L., & McLauchlan, K. K. (2017). Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape. Plos One, 12(4), 15. doi:10.1371/journal.pone.0176445Fire is a key Earth system process, with 80% of annual fire activity taking place in grassland areas. However, past fire regimes in grassland systems have been difficult to quantify due to challenges in interpreting the charcoal signal in depositional environments. To improve reconstructions of grassland fire regimes, it is essential to assess two key traits: (1) charcoal count, and (2) charcoal shape. In this study, we quantified the number of charcoal pieces in 51 sediment samples of ponds in the Great Plains and tested its relevance as a proxy for the fire regime by examining 13 potential factors influencing charcoal count, including various fire regime components (e.g. the fire frequency, the area burned, and the fire season), vegetation cover and pollen assemblages, and climate variables. We also quantified the width to length (W: L) ratio of charcoal particles, to assess its utility as a proxy of fuel types in grassland environments by direct comparison with vegetation cover and pollen assemblages. Our first conclusion is that charcoal particles produced by grassland fires are smaller than those produced by forest fires. Thus, a mesh size of 120 mu m as used in forested environments is too large for grassland ecosystems. We recommend counting all charcoal particles over 60 mu m in grasslands and mixed grass-forest environments to increase the number of samples with useful data. Second, a W: L ratio of 0.5 or smaller appears to be an indicator for fuel types, when vegetation surrounding the site is before composed of at least 40% grassland vegetation. Third, the area burned within 1060m of the depositional environments explained both the count and the area of charcoal particles. Therefore, changes in charcoal count or charcoal area through time indicate a change in area burned. The fire regimes of grassland systems, including both human and climatic influences on fire behavior, can be characterized by long-term charcoal records

    Cohort study of the impact of direct acting antiviral therapy in patients with chronic hepatitis C and decompensated cirrhosis

    Get PDF
    Background and Aims: All oral direct-acting antivirals (DAAs) effectively treat chronic hepatitis C virus (HCV) infection, but the benefits in advanced liver disease are unclear. We compared outcomes in treated and untreated patients with decompensated cirrhosis. Methods: Patients with HCV and decompensated cirrhosis or at risk of irreversible disease were treated in an Expanded Access Programme (EAP) in 2014. Treatment, by clinician choice, was with sofosbuvir, ledipasvir or daclatasvir, with or without ribavirin. For functional outcome comparison, untreated patients with HCV and decompensated cirrhosis who were registered on a database 6 months before treatment was available were retrospectively studied. Primary endpoint was sustained virological response 12 weeks post antiviral treatment (treated cohort) and the secondary endpoint (both cohorts) was adverse outcomes (worsening in MELD score or serious adverse event) within 6 months. Results: 467 patients received treatment (409 decompensated cirrhosis). Viral clearance was achieved in 381 patients (81.6%) – 209 from 231 (90.5%) with genotype 1 and 132 from 192 (68.8%) with genotype 3. MELD scores improved in treated patients (mean change -0.85) but worsened in untreated patients (mean + 0.75) (p65 or with low (<135 mmol/L) baseline serum sodium concentrations were least likely to benefit from therapy. Conclusions: All oral DAAs effectively cured HCV in patients with advanced liver disease. Viral clearance was associated with improvement in liver function within 6 months compared to untreated patients. The longer term impact of HCV treatment in patients with decompensated cirrhosis remains to be determined

    Survey of A_LT' asymmetries in semi-exclusive electron scattering on He4 and C12

    Full text link
    Single spin azimuthal asymmetries A_LT' were measured at Jefferson Lab using 2.2 and 4.4 GeV longitudinally polarized electrons incident on He4 and C12 targets in the CLAS detector. A_LT' is related to the imaginary part of the longitudinal-transverse interference and in quasifree nucleon knockout it provides an unambiguous signature for final state interactions (FSI). Experimental values of A_LT' were found to be below 5%, typically |A_LT'| < 3% for data with good statistical precision. Optical Model in Eikonal Approximation (OMEA) and Relativistic Multiple-Scattering Glauber Approximation (RMSGA) calculations are shown to be consistent with the measured asymmetries.Comment: 9 pages, 5 figure

    Reconstructing Disturbances and Their Biogeochemical Consequences over Multiple Timescales

    Get PDF
    Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in the coming decades, but many aspects of these predictions are uncertain. A key challenge is to improve the predictability of postdisturbance biogeochemical trajectories at the ecosystem level. Ecosystem ecologists and paleoecologists have generated complementary data sets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrient cycling) spanning decadal to millennial timescales. Here, we take the first steps toward a full integration of these data sets by reviewing how disturbances are reconstructed using dendrochronological and sedimentary archives and by summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research priorities include further development of paleoecological techniques that reconstruct both disturbances and terrestrial ecosystem dynamics. In addition, mechanistic detail from disturbance experiments, long-term observations, and chronosequences can help increase the understanding of ecosystem resilienc

    Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less, and the third nucleon has most of the transferred energy. These fast pp and pn pairs are back-to-back with little momentum along the three-momentum transfer, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured distorted two-nucleon momentum distributions by striking the third nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
    corecore