620 research outputs found

    Visual and Chemosensory Pathways Associated With Male Courtship Decisions in Drosophila melanogaster

    Get PDF
    Successful mating in diverse animal species often depends on ritualistic sequences of spatially and temporally coordinated behavioral elements. Yet, the sensory cues and neural circuits that mediate optimal mating display patterns are largely unknown. The courtship ritual in Drosophila melanogaster consists of a well-studied sequence of behavioral elements — including orienting, chasing, tapping, singing, and licking — that are known to depend on several sensory modalities, including both vision and chemosensation. However, the specific sensory inputs utilized by males to direct the spatial and temporal transitions between different elements of the courtship ritual are not well understood. In this thesis, I therefore first develop a new computational tool to quantitatively characterize male courtship behaviors with a high spatial and temporal resolution. Subsequently, I use this tool, in conjunction with genetic and microscopy approaches to map the visual and chemosensory neural pathways that drive some of the patterned behavioral elements of the male courtship ritual. I demonstrate that whereas visual circuits are important for mediating both spatial and temporal components of male mating behaviors, chemosensory circuits are mostly required for enhancing the duration and intensity of courtship bouts. Further, I identify a male-specific axonal architecture present in subpopulations of foreleg chemosensory neurons which is important for helping to sustain mating behaviors. This thesis examines the inputs, processing centers, and neural architectures required for the proper organization of innate mating behaviors and should provide insight into understanding how animals transform sensory stimuli into complex behavioral outputs, which is a major goal in modern neuroscience

    Visual and Chemosensory Pathways Associated With Male Courtship Decisions in Drosophila melanogaster

    Get PDF
    Successful mating in diverse animal species often depends on ritualistic sequences of spatially and temporally coordinated behavioral elements. Yet, the sensory cues and neural circuits that mediate optimal mating display patterns are largely unknown. The courtship ritual in Drosophila melanogaster consists of a well-studied sequence of behavioral elements — including orienting, chasing, tapping, singing, and licking — that are known to depend on several sensory modalities, including both vision and chemosensation. However, the specific sensory inputs utilized by males to direct the spatial and temporal transitions between different elements of the courtship ritual are not well understood. In this thesis, I therefore first develop a new computational tool to quantitatively characterize male courtship behaviors with a high spatial and temporal resolution. Subsequently, I use this tool, in conjunction with genetic and microscopy approaches to map the visual and chemosensory neural pathways that drive some of the patterned behavioral elements of the male courtship ritual. I demonstrate that whereas visual circuits are important for mediating both spatial and temporal components of male mating behaviors, chemosensory circuits are mostly required for enhancing the duration and intensity of courtship bouts. Further, I identify a male-specific axonal architecture present in subpopulations of foreleg chemosensory neurons which is important for helping to sustain mating behaviors. This thesis examines the inputs, processing centers, and neural architectures required for the proper organization of innate mating behaviors and should provide insight into understanding how animals transform sensory stimuli into complex behavioral outputs, which is a major goal in modern neuroscience

    Should an Institution That Has Commercial Rights in a New Drug or Device Be Allowed to Evaluate the Technology?

    Get PDF
    Background to the debate: In the United States, the passage of the Bayh–Dole Act in 1980 encouraged universities to license inventions for commercial development. Although this financial incentive can stimulate academic researchers to discover new drugs and devices, there is concern that the possibility of monetary reward could distort investigators' objectivity

    Floods and fire ants, Solenopsis invicta (Hymenoptera: Formicidae): The Australian experience

    Get PDF
    The rafting behaviour of the red imported fire ant, Solenopsis invicta, in response to flooding events is well documented, although studies generally have focussed on the mechanisms of raft assembly and the behaviour of the raft’s occupants. Flooding as a means of dispersal of S. invicta is frequently mentioned in the literature, although there are few data on the distances travelled or how effective it is compared to natural flight. In Australia, S. invicta is a priority invasive species with a national eradication program operating for 23 years, focussed on the population in southeast Queensland, which currently encompasses more than 700 000 ha. Flooding presents a risk to the success of the program through extending the infestation area or recolonising successfully treated areas. We used the program’s extensive spatiotemporal dataset of known fire ant colony locations to assess the effects of two significant flood events on the dispersal or displacement of S. invicta in Queensland. Results indicated that flooding did not spread S. invicta beyond the known boundaries of infestation but contributed to localised spread, particularly for sites with known polygyne infestations. This situation could change if the ant spreads to new river catchments. A novel method developed to assess the risk of S. invicta dispersal through flooding is presented, alongside program actions that can be applied to mitigate this risk

    The Metal Ion Requirements of \u3cem\u3eArabidopsis thaliana\u3c/em\u3e Glx2-2 for Catalytic Activity

    Get PDF
    In an effort to better understand the structure, metal content, the nature of the metal centers, and enzyme activity of Arabidopsis thaliana Glx2-2, the enzyme was overexpressed, purified, and characterized using metal analyses, kinetics, and UV–vis, EPR, and 1H NMR spectroscopies. Glx2-2-containing fractions that were purple, yellow, or colorless were separated during purification, and the differently colored fractions were found to contain different amounts of Fe and Zn(II). Spectroscopic analyses of the discrete fractions provided evidence for Fe(II), Fe(III), Fe(III)–Zn(II), and antiferromagnetically coupled Fe(II)–Fe(III) centers distributed among the discrete Glx2-2-containing fractions. The individual steady-state kinetic constants varied among the fractionated species, depending on the number and type of metal ion present. Intriguingly, however, the catalytic efficiency constant, k cat/K m, was invariant among the fractions. The value of k cat/K m governs the catalytic rate at low, physiological substrate concentrations. We suggest that the independence of k cat/K m on the precise makeup of the active-site metal center is evolutionarily related to the lack of selectivity for either Fe versus Zn(II) or Fe(II) versus Fe(III), in one or more metal binding sites

    Human Glyoxalase II Contains an Fe(II)Zn(II) Center but Is Active as a Mononuclear Zn(II) Enzyme

    Get PDF
    Human glyoxalase II (Glx2) was overexpressed in rich medium and in minimal medium containing zinc, iron, or cobalt, and the resulting Glx2 analogues were characterized using metal analyses, steady-state and pre-steady-state kinetics, and NMR and EPR spectroscopies to determine the nature of the metal center in the enzyme. Recombinant human Glx2 tightly binds nearly 1 equiv each of Zn(II) and Fe. In contrast to previous reports, this study demonstrates that an analogue containing 2 equiv of Zn(II) cannot be prepared. EPR studies suggest that most of the iron in recombinant Glx2 is Fe(II). NMR studies show that Fe(II) binds to the consensus Zn2 site in Glx2 and that this site can also bind Co(II) and Ni(II), suggesting that Zn(II) binds to the consensus Zn1 site. The NMR studies also reveal the presence of a dinuclear Co(II) center in Co(II)-substituted Glx2. Steady-state and pre-steady-state kinetic studies show that Glx2 containing only 1 equiv of Zn(II) is catalytically active and that the metal ion in the consensus Zn2 site has little effect on catalytic activity. Taken together, these studies suggest that Glx2 contains a Fe(II)Zn(II) center in vivo but that the catalytic activity is due to Zn(II) in the Zn1 site

    Converting GLX2-1 into an Active Glyoxalase II

    Get PDF
    Arabidopsis thaliana glyoxalase 2-1 (GLX2-1) exhibits extensive sequence similarity with GLX2 enzymes but is catalytically inactive with SLG, the GLX2 substrate. In an effort to identify residues essential for GLX2 activity, amino acid residues were altered at positions 219, 246, 248, 325, and 328 in GLX2-1 to be the same as those in catalytically active human GLX2. The resulting enzymes were overexpressed, purified, and characterized using metal analyses, fluorescence spectroscopy, and steady-state kinetics to evaluate how these residues affect metal binding, structure, and catalysis. The R246H/N248Y double mutant exhibited low level S-lactoylglutathione hydrolase activity, while the R246H/N248Y/Q325R/R328K mutant exhibited a 1.5−2-fold increase in kcat and a decrease in Km as compared to the values exhibited by the double mutant. In contrast, the R246H mutant of GLX2-1 did not exhibit glyoxalase 2 activity. Zn(II)-loaded R246H GLX2-1 enzyme bound 2 equiv of Zn(II), and 1H NMR spectra of the Co(II)-substituted analogue of this enzyme strongly suggest that the introduced histidine binds to Co(II). EPR studies indicate the presence of significant amounts a dinuclear metal ion-containing center. Therefore, an active GLX2 enzyme requires both the presence of a properly positioned metal center and significant nonmetal, enzyme−substrate contacts, with tyrosine 255 being particularly important

    Effect of developmental stage of HSC and recipient on transplant outcomes

    Get PDF
    The first hematopoietic stem cells (HSCs) that engraft irradiated adult mice arise in the aorta-gonad-mesonephros (AGM) on embryonic day 11.5 (E11.5). However, at this stage, there is a discrepancy between the apparent frequency of HSCs depicted with imaging and their rarity when measured with limiting dilution transplant. We have attempted to reconcile this difference using neonatal recipients, which are more permissive for embryonic HSC engraftment. We found that embryonic HSCs from E9.5 and E10.5 preferentially engrafted neonates, whereas developmentally mature, definitive HSCs from E14.5 fetal liver or adult bone marrow (BM) more robustly engrafted adults. Neonatal engraftment was enhanced after treating adult BM-derived HSCs with interferon. Adult BM-derived HSCs preferentially homed to the liver in neonatal mice yet showed balanced homing to the liver and spleen in adults. These findings emphasize the functional differences between nascent and mature definitive HSCs

    An optically thick inner corona geometry for the Very High State Galactic Black Hole XTE J1550-564

    Full text link
    (truncated version) The X-ray spectra of Galactic binary systems in the very high state show both strong disk emission and a strong, steep tail to high energies. We use simultaneous optical-ASCA-RXTE data from the black hole transient XTE J1550-564 as a specific example, and show that these have disc spectra which are significantly lower in temperature than those seen from the same source at the same luminosity when in the disc dominated state. If these give a true picture of the disc then either the disc emissivity has reduced, and/or the disc truncates above the last stable orbit. However, it is often assumed that the tail is produced by Compton scattering, in which case its shape in these spectra requires that the Comptonising region is marginally optically thick (tau~2-3), and covers a large fraction of the inner disc. This will distort our view of the disc. We build a theoretical model of a Comptonising corona over an inner disc, and fit this to the data, but find that it still requires a large increase in inner disc radius for a standard disc emissivity. Instead it seems more probable that the disc emissivity changes in the presence of the corona. We implement the specific inner disc-corona coupling model of Svensson & Zdziarski (1994) and show that this can explain the low temperature/high luminosity disc emission seen in the very high state with only a small increase in radius of the disc. While this inferred disc truncation is probably not significant given the model uncertainties, it is consistent with the low frequency QPO and gives continuity of properties with the low/hard state spectra.Comment: MNRAS accepted version, with major expansion of the discussion to include comments on comptonisation, extreme broad iron lines and high frequency QPO's. 18 pages, 8 figure

    Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity

    Get PDF
    The early stages of invasion involve demographic bottlenecks that may result in lower genetic variation in introduced populations as compared to source population/s. Low genetic variability may decrease the adaptive potential of such populations in their new environments. Previous population genetic studies of invasive species have reported varying levels of losses of genetic variability in comparisons of source and invasive populations. However, intraspecific comparisons are required to assess more thoroughly the repeatability of genetic consequences of colonization events. Descriptions of invasive species for which multiple introductions from a single source population have been demonstrated may be particularly informative. The western corn rootworm (WCR), Diabrotica virgifera virgifera, native to North America and invasive in Europe, offers us an opportunity to analyse multiple introduction events within a single species. We investigated within- and between-population variation at eight microsatellite markers in WCR in North America and Europe to investigate the routes by which WCR was introduced into Europe, and to assess the effect of introduction events on genetic variation. We detected five independent introduction events from the northern USA into Europe. The diversity loss following these introductions differed considerably between events, suggesting substantial variation in introduction, foundation and/or establishment conditions. Genetic variability at evolutionarily neutral loci does not seem to underlie the invasive success of WCR in Europe. We also showed that the introduction of WCR into Europe resulted in the redistribution of genetic variance from the intra- to the interpopulational level contrary to most examples of multiple introductions
    corecore