85 research outputs found

    Making sense of a mess: “doing” resilience in the vortex of a crisis

    Get PDF
    Purpose The purpose of the paper is to investigate how human resource professionals (HRPs), in a variety of organizations, responded to the crisis brought about by the event of COVID-19. In particular, it aims to show how organizations, across all sectors, in Western Australia responded with urgency and flexibility to the crisis and showed “resilience in practice”. Design/methodology/approach The study is based on 136 questionnaire responses, 32 interviews and 25 managerial narratives. The mixed qualitative methodology was designed to enable an investigation of the impact of COVID-19 and the response of HRPs. Findings HRPs have responded with agility and flexibility to the impact of COVID-19. They have done so through extensive trial and error, sometimes succeeding, sometimes failing. They have not simply activated a preconceived continuity plan. Research limitations/implications The research indicates that resilience is an ongoing accomplishment of organizations and the people in them. The objective was description rather than prescription, and the research does not offer solutions to future pandemic-like situations. Practical implications The research suggests that, given the impact of COVID-19 on organizations, HR practices, processes and policies will need to be thoroughly reconsidered for relevance in the post-COVID world. Possible future directions are highlighted. Originality/value The research considers the actions of HRPs as they responded to a global crisis as the crisis unfolded

    The impact of Covid-19 on human resource management: avoiding generalisations

    Get PDF
    Many organisations are using remote working for the first time. HR professionals are having to improvise daily, write Eileen Aitken-Fox, Jane Coffey, Kantha Dayaram, Scott Fitzgerald, Chahat Gupta, Steve McKenna, and Amy Wei Tia

    Season and vitamin D status are independently associated with glucose homeostasis in pregnancy

    Get PDF
    Background: Vitamin D status and season are intrinsically linked, and both have been proposed to be associated with glucose homeostasis in pregnancy, with conflicting results. We aimed to determine if exposure to winter and low maternal 25 hydroxyvitamin D (25OHD) in early pregnancy were associated with maternal glucose metabolism.Methods: This is a secondary data analysis of 334 pregnant women enrolled in the ROLO study, Dublin. Serum 25OHD, fasting glucose, insulin and insulin resistance (HOMA-IR) were measured in early (12 weeks' gestation) and late pregnancy (28 weeks' gestation). Season of first antenatal visit was categorised as extended winter (November–April) or extended summer (May–October). Multiple linear regression models, adjusted for confounders, were used for analysis.Results: Those who attended their first antenatal visit in extended winter had lower 25OHD compared to extended summer (32.9 nmol/L vs. 44.1 nmol/L, P < 0.001). Compared to those who attended their first antenatal visit during extended summer, extended winter was associated with increased HOMA-IR in early-pregnancy (46.7%) and late pregnancy (53.7%), independent of 25OHD <30 nmol/L and confounders. Early pregnancy 25OHD <30 nmol/L and extended winter were independently associated with significantly higher fasting glucose in late pregnancy (B = 0.15 and 0.13, respectively).Conclusions: Women who attended their first antenatal visit during the months of extended winter were more likely to have raised insulin resistance in early pregnancy, which had a lasting association to 28 weeks, and was independent of 25OHD. Our novel findings imply that seasonal variation in insulin resistance may not be fully explained by differences in vitamin D status. This could reflect circannual rhythm or seasonal lifestyle behaviours, and requires further exploration.Trial registration: ISRCTN registry, ISRCTN54392969, date of registration: 22/04/2009, retrospectively registered

    Nutrition policy: developing scientific recommendations for food-based dietary guidelines for older adults living independently in Ireland

    Get PDF
    Older adults (≥65 years) are the fastest growing population group. Thus, ensuring nutritional well-being of the ‘over-65s’ to optimise health is critically important. Older adults represent a diverse population – some are fit and healthy, others are frail and many live with chronic conditions. Up to 78% of older Irish adults living independently are overweight or obese. The present paper describes how these issues were accommodated into the development of food-based dietary guidelines for older adults living independently in Ireland. Food-based dietary guidelines previously established for the general adult population served as the basis for developing more specific recommendations appropriate for older adults. Published international reports were used to update nutrient intake goals for older adults, and available Irish data on dietary intakes and nutritional status biomarkers were explored from a population-based study (the National Adult Nutrition Survey; NANS) and two longitudinal cohorts: the Trinity-Ulster and Department of Agriculture (TUDA) and the Irish Longitudinal Study on Ageing (TILDA) studies. Nutrients of public health concern were identified for further examination. While most nutrient intake goals were similar to those for the general adult population, other aspects were identified where nutritional concerns of ageing require more specific food-based dietary guidelines. These include, a more protein-dense diet using high-quality protein foods to preserve muscle mass; weight maintenance in overweight or obese older adults with no health issues and, where weight-loss is required, that lean tissue is preserved; the promotion of fortified foods, particularly as a bioavailable source of B vitamins and the need for vitamin D supplementation

    A genome resequencing-based genetic map reveals the recombination landscape of an outbred parasitic nematode in the presence of polyploidy and polyandry

    Get PDF
    The parasitic nematode Haemonchus contortus is an economically and clinically important pathogen of small ruminants, and a model system for understanding the mechanisms and evolution of traits such as anthelmintic resistance. Anthelmintic resistance is widespread and is a major threat to the sustainability of livestock agriculture globally; however, little is known about the genome architecture and parameters such as recombination that will ultimately influence the rate at which resistance may evolve and spread. Here we performed a genetic cross between two divergent strains of H. contortus, and subsequently used whole-genome re-sequencing of a female worm and her brood to identify the distribution of genome-wide variation that characterises these strains. Using a novel bioinformatic approach to identify variants that segregate as expected in a pseudo-testcross, we characterised linkage groups and estimated genetic distances between markers to generate a chromosome-scale F1 genetic map. We exploited this map to reveal the recombination landscape, the first for any parasitic helminth species, demonstrating extensive variation in recombination rate within and between chromosomes. Analyses of these data also revealed the extent of polyandry, whereby at least eight males were found to have contributed to the genetic variation of the progeny analysed. Triploid offspring were also identified, which we hypothesise are the result of nondisjunction during female meiosis or polyspermy. These results expand our knowledge of the genetics of parasitic helminths and the unusual life-history of H. contortus, and enhance ongoing efforts to understand the genetic basis of resistance to the drugs used to control these worms and for related species that infect livestock and humans throughout the world. This study also demonstrates the feasibility of using whole-genome resequencing data to directly construct a genetic map in a single generation cross from a non-inbred non-model organism with a complex lifecycle

    Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2

    Get PDF
    Enteropathy-associated T cell lymphoma (EATL) is a lethal, and the most common, neoplastic complication of celiac disease. Here, we defined the genetic landscape of EATL through whole-exome sequencing of 69 EATL tumors. SETD2 was the most frequently silenced gene in EATL (32% of cases). The JAK-STAT pathway was the most frequently mutated pathway, with frequent mutations in STAT5B as well as JAK1 , JAK3 , STAT3 , and SOCS1 . We also identified mutations in KRAS , TP53 , and TERT . Type I EATL and type II EATL (monomorphic epitheliotropic intestinal T cell lymphoma) had highly overlapping genetic alterations indicating shared mechanisms underlying their pathogenesis. We modeled the effects of SETD2 loss in vivo by developing a T cell–specific knockout mouse. These mice manifested an expansion of γδ T cells, indicating novel roles for SETD2 in T cell development and lymphomagenesis. Our data render the most comprehensive genetic portrait yet of this uncommon but lethal disease and may inform future classification schemes

    Novel SNP Discovery in African Buffalo, Syncerus caffer, using high-throughput Sequencing

    Get PDF
    The African buffalo, Syncerus caffer, is one of the most abundant and ecologically important species of megafauna in the savannah ecosystem. It is an important prey species, as well as a host for a vast array of nematodes, pathogens and infectious diseases, such as bovine tuberculosis and corridor disease. Large-scale SNP discovery in this species would greatly facilitate further research into the area of host genetics and disease susceptibility, as well as provide a wealth of sequence information for other conservation and genomics studies. We sequenced pools of Cape buffalo DNA from a total of 9 animals, on an ABI SOLiD4 sequencer. The resulting short reads were mapped to the UMD3.1 Bos taurus genome assembly using both BWA and Bowtie software packages. A mean depth of 2.76 coverage over the mapped regions was obtained. Btau4 gene annotation was added to all SNPs identified within gene regions. Bowtie and BWA identified a maximum of 2,222,665 and 276,847 SNPs within the buffalo respectively, depending on analysis method. A panel of 173 SNPs was validated by fluorescent genotyping in 87 individuals. 27 SNPs failed to amplify, and of the remaining 146 SNPs, 43–54 % of the Bowtie SNPs and 57–58 % of the BWA SNPs were confirmed as polymorphic. dN/dS ratios found no evidence of positive selection, and although there were genes that appeared to be under negative selection, these were more likely to be slowl

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study

    Get PDF
    Background: The SARS-CoV-2 delta (B.1.617.2) variant was first detected in England in March, 2021. It has since rapidly become the predominant lineage, owing to high transmissibility. It is suspected that the delta variant is associated with more severe disease than the previously dominant alpha (B.1.1.7) variant. We aimed to characterise the severity of the delta variant compared with the alpha variant by determining the relative risk of hospital attendance outcomes. Methods: This cohort study was done among all patients with COVID-19 in England between March 29 and May 23, 2021, who were identified as being infected with either the alpha or delta SARS-CoV-2 variant through whole-genome sequencing. Individual-level data on these patients were linked to routine health-care datasets on vaccination, emergency care attendance, hospital admission, and mortality (data from Public Health England's Second Generation Surveillance System and COVID-19-associated deaths dataset; the National Immunisation Management System; and NHS Digital Secondary Uses Services and Emergency Care Data Set). The risk for hospital admission and emergency care attendance were compared between patients with sequencing-confirmed delta and alpha variants for the whole cohort and by vaccination status subgroups. Stratified Cox regression was used to adjust for age, sex, ethnicity, deprivation, recent international travel, area of residence, calendar week, and vaccination status. Findings: Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years IQR 17–43) were included in our analysis. 196 (2·3%) patients with the delta variant versus 764 (2·2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio HR 2·26 95% CI 1·32–3·89). 498 (5·7%) patients with the delta variant versus 1448 (4·2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1·45 1·08–1·95). Most patients were unvaccinated (32 078 74·0% across both groups). The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1·94 95% CI 0·47–8·05 and for hospital admission or emergency care attendance 1·58 0·69–3·61) were similar to the HRs for unvaccinated patients (2·32 1·29–4·16 and 1·43 1·04–1·97; p=0·82 for both) but the precision for the vaccinated subgroup was low. Interpretation: This large national study found a higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant. Results suggest that outbreaks of the delta variant in unvaccinated populations might lead to a greater burden on health-care services than the alpha variant
    corecore