76 research outputs found
Introducing Novitates Paleoentomologicae: An outlet for occasional fossil insect research at the University of Kansas
This is the publisher's version, also available electronically from https://journals.ku.edu/index.php/paleoent/indexA new journal is introduced which disseminates the results of research conducted at or in association with the University of Kansas on fossil insects and their relatives. The journal spans all aspects of paleoentomological research, extending beyond systematic studies to include works on insect-bearing deposits, and their taphonomy and ecology
A fossil species of the primitive mymarid genus Borneomymar (Hymenoptera: Mymaridae) in Eocene Baltic amber
This is the publisher's version, also available electronically from https://journals.ku.edu/index.php/paleoent/article/view/4651A new fossil species of fairyfly (Hymenoptera: Chalcidoidea: Mymaridae) is described and figured from a well-preserved female in middle Eocene (Lutetian) Baltic amber as Borneomymar pankowskiorum Engel, McKellar, & Huber, new species. This species represents the fourth genus from Baltic amber whose extant species now occur only in southeastern Asia, Australia and Madagasca
A new trap-jawed ant (Hymenoptera: Formicidae: Haidomyrmecini) from Canadian Late Cretaceous amber
This is the publisher's version, also available electronically from http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8953790&fileId=S0008347X13000230A new genus and species are described within the extinct tribe Haidomyrmecini, and tentatively placed within the subfamily Sphecomyrminae (Hymenoptera: Formicidae). Haidoterminus cippus new genus and species expands the distribution of the bizarre, exclusively Cretaceous, trap-jawed Haidomyrmecini beyond their previous records in mid-Cretaceous Burmese and French amber, and into Laurentia. The new material from the Grassy Lake, Alberta, Canada collecting locality also provides evidence that these highly specialised, likely arboreal, ants persisted for an additional 20 million years, reaching the Late Cretaceous. Morphological features of H. cippus, such as the presence of an elongate antennomere II (pedicel), further support the argument that Haidomyrmecini may not actually belong within the subfamily Sphecomyrminae, and may warrant recognition at the subfamily level or inclusion as a highly autapomorphic clade within another subfamily. Despite the introduction of new fossil material, and the clarity of preservation in Canadian amber, the mystery of how Haidomyrmecini fed remains unsolved
A mid-Cretaceous enantiornithine foot and tail feather preserved in Burmese amber
This work is licensed under a Creative Commons Attribution 4.0 International License.Since the first skeletal remains of avians preserved in amber were described in 2016, new avian remains trapped in Cretaceous-age Burmese amber continue to be uncovered, revealing a diversity of skeletal and feather morphologies observed nowhere else in the Mesozoic fossil record. Here we describe a foot with digital proportions unlike any previously described enantiornithine or Mesozoic bird. No bones are preserved in the new specimen but the outline of the foot is recorded in a detailed skin surface, which is surrounded by feather inclusions including a partial rachis-dominated feather. Pedal proportions and plumage support identification as an enantiornithine, but unlike previous discoveries the toes are stout with transversely elongated digital pads, and the outer toe appears strongly thickened relative to the inner two digits. The new specimen increases the known diversity and morphological disparity among the Enantiornithes, hinting at a wider range of habitats and behaviours. It also suggests that the Burmese amber avifauna was distinct from other Mesozoic assemblages, with amber entrapment including representatives from unusual small forms
Morphological and organic spectroscopic studies of a 44-million-year-old leaf beetle (Coleoptera: Chrysomelidae) in amber with endogenous remains of chitin
This study details the quality of preservation of amber deposits in the Eocene. Through Baltic amber crack-out studies using Synchrotron Micro-Computed Tomography and Scanning Electron Microscopy it was found that the cuticle of a specimen of leaf beetle (Crepidodera tertiotertiaria (Alticini: Galerucinae: Chrysomelidae)) is exceptionally well preserved. Spectroscopic analysis using Synchrotron Fourier Transform Infrared Spectroscopy suggests presence of degraded α
-chitin in multiple areas of the cuticle, and Energy Dispersive Spectroscopy supports the presence of organic preservation. This remarkable preservation is likely the result of several factors such as the favourable antimicrobial and physical shielding properties of Baltic amber as compared to other depositional media, coupled to rapid dehydration of the beetle early in its taphonomic process. We provide evidence that crack-out studies of amber inclusions, although inherently destructive of fossils, are an underutilised method for probing exceptional preservation in deep time
New and revised maimetshid wasps from cretaceous ambers (Hymenoptera, Maimetshidae)
New material of the wasp family Maimetshidae (Apocrita) is presented from four Cretaceous amber de- posits- the Neocomian of Lebanon, the Early Albian of Spain, the latest Albian/earliest Cenomanian of France, and the Campanian of Canada. The new record from Canadian Cretaceous amber extends the temporal and paleogeographical range of the family. New material from France is assignable to Guyote- maimetsha enigmatica Perrichot et al. including the first females for the species, while a series of males and females from Spain are described and figured as Iberomaimetsha Ortega-Blanco, Perrichot & Engel, gen. n., with the two new species Iberomaimetsha rasnitsyni Ortega-Blanco, Perrichot & Engel, sp. n. and I. nihtmara Ortega-Blanco, Delclòs & Engel, sp. n.; a single female from Lebanon is described and figured as Ahiromaimetsha najlae Perrichot, Azar, Nel & Engel, gen. et sp. n., and a single male from Canada is described and figured as Ahstemiam cellula McKellar & Engel, gen. et sp. n. The taxa are compared with other maimetshids, a key to genera and species is given, and brief comments made on the family
Crab in Amber Reveals an Early Colonization of Nonmarine Environments During the Cretaceous
Amber fossils provide snapshots of the anatomy, biology, and ecology of extinct organisms that are otherwise inaccessible. The best-known fossils in amber are terrestrial arthropods—principally insects—whereas aquatic organisms are rarely represented. Here, we present the first record of true crabs (Brachyura) in amber—from the Cretaceous of Myanmar [~100 to 99 million years (Ma)]. The new fossil preserves large compound eyes, delicate mouthparts, and even gills. This modern-looking crab is nested within crown Eubrachyura, or “higher” true crabs, which includes the majority of brachyuran species living today. The fossil appears to have been trapped in a brackish or freshwater setting near a coastal to fluvio-estuarine environment, bridging the gap between the predicted molecular divergence of nonmarine crabs (~130 Ma) and their younger fossil record (latest Cretaceous and Paleogene, ~75 to 50 Ma) while providing a reliable calibration point for molecular divergence time estimates for higher crown eubrachyurans
A direct association between amber and dinosaur remains provides paleoecological insights
This work is licensed under a Creative Commons Attribution 4.0 International License.Hadrosaurian dinosaurs were abundant in the Late Cretaceous of North America, but their habitats remain poorly understood. Cretaceous amber is also relatively abundant, yet it is seldom found in direct stratigraphic association with dinosaur remains. Here we describe an unusually large amber specimen attached to a Prosaurolophus jaw, which reveals details of the contemporaneous paleoforest and entomofauna. Fourier-transform Infrared spectroscopy and stable isotope composition (H and C) suggest the amber formed from resins exuded by cupressaceous conifers occupying a coastal plain. An aphid within the amber belongs to Cretamyzidae, a Cretaceous family suggested to bark-feed on conifers. Distinct tooth row impressions on the amber match the hadrosaur’s alveolar bone ridges, providing some insight into the taphonomic processes that brought these remains together
Mummified precocial bird wings in mid-Cretaceous Burmese amber
Our knowledge of Cretaceous plumage is limited by the fossil record itself: compression fossils surrounding skeletons lack the finest morphological details and seldom preserve visible traces of colour, while discoveries in amber have been disassociated from their source animals. Here we report the osteology, plumage and pterylosis of two exceptionally preserved theropod wings from Burmese amber, with vestiges of soft tissues. The extremely small size and osteological development of the wings, combined with their digit proportions, strongly suggests that the remains represent precocial hatchlings of enantiornithine birds. These specimens demonstrate that the plumage types associated with modern birds were present within single individuals of Enantiornithes by the Cenomanian (99 million years ago), providing insights into plumage arrangement and microstructure alongside immature skeletal remains. This finding brings new detail to our understanding of infrequently preserved juveniles, including the first concrete examples of follicles, feather tracts and apteria in Cretaceous avialans
- …