120 research outputs found

    Grasping the past: delay can improve visuomotor performance

    Get PDF
    “Optic ataxia” is caused by damage to the human posterior parietal cortex (PPC). It disrupts all components of a visually guided prehension movement, not only the transport of the hand toward an object's location [1], but also the in-flight finger movements pretailored to the metric properties of the object [2, 3 and 4]. Like previous cases [4 and 5], our patient (I.G.) was quite unable to open her handgrip appropriately when directly reaching out to pick up objects of different sizes. When first tested, she failed to do this even when she had previewed the target object 5 s earlier. Yet despite this deficit in “real” grasping, we found, counterintuitively, that I.G. showed good grip scaling when “pantomiming” a grasp for an object seen earlier but no longer present. We then found that, after practice, I.G. became able to scale her handgrip when grasping a real target object that she had previewed earlier. By interposing catch trials in which a different object was covertly substituted for the original object during the delay between preview and grasp, we found that I.G. was now using memorized visual information to calibrate her real grasping movements. These results provide new evidence that “off-line” visuomotor guidance can be provided by networks independent of the PPC

    Intact automatic avoidance of obstacles in patients with visual form agnosia

    Get PDF
    In everyday life our reaching behaviour has to be guided not only by the location and properties of the target object, but also by the presence of potential obstacles in the workspace. Recent evidence from neglect and optic ataxia patients has suggested that this automatic obstacle avoidance is mediated by the dorsal, rather than the ventral, stream of visual processing. We tested this idea in two studies involving patients with visual form agnosia resulting from bilateral ventral-stream damage. In the first study, we asked patient DF to reach out and pick up a target object in the presence of obstacles placed at varying distances to the left or right of the target. We found that both DF and controls shifted their trajectories away from the potential obstacles and adjusted their grip aperture in such a way as to minimize risk of collision. In a second study, we asked DF and a second patient, SB, to either reach between, or to bisect the space between, two cylinders presented at varying locations. We found that both patients adjusted their reach trajectories to account for shifts in cylinder location in the reaching task, despite showing significantly worse performance than control subjects when asked to make a bisection judgement. Taken together, these data indicate that automatic obstacle avoidance behaviour is spared in our patients with visual form agnosia. We attribute their ability to the functional intactness of the dorsal stream of visual processing, and argue that the ventral stream plays no important role in automatic obstacle avoidance

    The disengage deficit in hemispatial neglect is restricted to between-object shifts and is abolished by prism adaptation

    Get PDF
    We sought to determine the effects of prism adaptation on peripherally cued visual attention shifting in patients with spatial neglect, using a task devised by Egly et al. (J Exp Psychol Gen 123:161–177, 1994) based on the classic Posner paradigm. This task allowed a comparison of “within-object” versus “between-object” attention shifts. A display was presented containing two parallel outline rectangles, and subjects were asked to make rapid responses to a target, which would appear at one end of one of the rectangles. The target location was pre-cued with 75% validity: on invalid trials attention was directed either to the other end of the same rectangle, or to the other rectangle. Healthy subjects and right-hemisphere patients without neglect showed a left-right symmetrical pattern, with a larger validity effect when required to shift attention between rectangles, thus indicating a greater difficulty of attention-shifting between than within the respective shapes. The neglect patients showed the typical leftward “disengage deficit” previously observed in neglect, but only for attention shifts between objects, indicating that the effect is object-based rather than purely spatial. A comparison of vertical and horizontal shift costs showed that this attention-shifting deficit for left-hemifield target stimuli was directional rather than hemifield-based: it was absent for vertical shifts of attention within the left hemifield. Finally, we found that prism adaptation abolished the disengage deficit. We found no effects of prism adaptation in the control subjects. We argue that prism adaptation has a powerful effect on one of the fundamental manifestations of the neglect syndrome

    A Better Way to Reconstruct Dark Energy Models ?

    Full text link
    To reconstruct dark energy models the redshift zeqz_{eq}, marking the end of radiation era and the beginning of matter-dominated era, can play a role as important as ztz_{t}, the redshift at which deceleration parameter experiences a signature flip. To implement the idea we propose a variable equation of state for matter that can bring a smooth transition from radiation to matter-dominated era in a single model. A popular Λ∝ρ\Lambda \propto \rho dark energy model is chosen for demonstration but found to be unacceptable. An alternative Λ∝ρa3\Lambda \propto \rho a^{3} model is proposed and found to be more close to observation.Comment: 17 pages, 5 figures Accepted for publication in `Astrophysics and Space Science

    The Hamiltonian limit of (3+1)D SU(3) lattice gauge theory on anisotropic lattices

    Get PDF
    The extreme anisotropic limit of Euclidean SU(3) lattice gauge theory is examined to extract the Hamiltonian limit, using standard path integral Monte Carlo (PIMC) methods. We examine the mean plaquette and string tension and compare them to results obtained within the Hamiltonian framework of Kogut and Susskind. The results are a significant improvement upon previous Hamiltonian estimates, despite the extrapolation procedure necessary to extract observables. We conclude that the PIMC method is a reliable method of obtaining results for the Hamiltonian version of the theory. Our results also clearly demonstrate the universality between the Hamiltonian and Euclidean formulations of lattice gauge theory. It is particularly important to take into account the renormalization of both the anisotropy, and the Euclidean coupling ÎČE \beta_E , in obtaining these results.Comment: 10 pages, 11 figure

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    Quantifying Between-Cohort and Between-Sex Genetic Heterogeneity in Major Depressive Disorder

    Get PDF
    Major depressive disorder (MDD) is clinically heterogeneous with prevalence rates twice as high in women as in men. There are many possible sources of heterogeneity in MDD most of which are not measured in a sufficiently comparable way across study samples. Here, we assess genetic heterogeneity based on two fundamental measures, between-cohort and between-sex heterogeneity. First, we used genome-wide association study (GWAS) summary statistics to investigate between-cohort genetic heterogeneity using the 29 research cohorts of the Psychiatric Genomics Consortium (PGC; N cases = 16,823, N controls = 25,632) and found that some of the cohort heterogeneity can be attributed to ascertainment differences (such as recruitment of cases from hospital vs community sources). Second, we evaluated between-sex genetic heterogeneity using GWAS summary statistics from the PGC, Kaiser Permanente GERA, UK Biobank and the Danish iPSYCH studies but did not find convincing evidence for genetic differences between the sexes. We conclude that there is no evidence that the heterogeneity between MDD data sets and between sexes reflects genetic heterogeneity. Larger sample sizes with detailed phenotypic records and genomic data remain the key to overcome heterogeneity inherent in assessment of MDD

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Weber and church governance: religious practice and economic activity

    Get PDF
    The debate about the relationship between religion and economic activity in the wake of Weber has been cast largely in terms of belief and values. This article suggests an alternative focus on practice. It argues that taken for granted practices of church governance formed to-hand resources for the organization of economic activity. The argument is developed through an examination of the historical development of church governance practices in the Presbyterian Church of Scotland, with particular emphasis on the way in which theological belief gave rise to practices of accountability and record keeping. In turn such practices contributed to a ‘culture of organization’ which had implications for economic activity. A focus on governance practices can help to illuminate enduring patterns of difference in the organization of economic activity
    • 

    corecore