478 research outputs found

    The development of an interim generalized gate logic software simulator

    Get PDF
    A proof-of-concept computer program called IGGLOSS (Interim Generalized Gate Logic Software Simulator) was developed and is discussed. The simulator engine was designed to perform stochastic estimation of self test coverage (fault-detection latency times) of digital computers or systems. A major attribute of the IGGLOSS is its high-speed simulation: 9.5 x 1,000,000 gates/cpu sec for nonfaulted circuits and 4.4 x 1,000,000 gates/cpu sec for faulted circuits on a VAX 11/780 host computer

    Measurement of fault latency in a digital avionic miniprocessor

    Get PDF
    The results of fault injection experiments utilizing a gate-level emulation of the central processor unit of the Bendix BDX-930 digital computer are presented. The failure detection coverage of comparison-monitoring and a typical avionics CPU self-test program was determined. The specific tasks and experiments included: (1) inject randomly selected gate-level and pin-level faults and emulate six software programs using comparison-monitoring to detect the faults; (2) based upon the derived empirical data develop and validate a model of fault latency that will forecast a software program's detecting ability; (3) given a typical avionics self-test program, inject randomly selected faults at both the gate-level and pin-level and determine the proportion of faults detected; (4) determine why faults were undetected; (5) recommend how the emulation can be extended to multiprocessor systems such as SIFT; and (6) determine the proportion of faults detected by a uniprocessor BIT (built-in-test) irrespective of self-test

    Feasibility study for a generalized gate logic software simulator

    Get PDF
    Unit-delay simulation, event driven simulation, zero-delay simulation, simulation techniques, 2-valued versus multivalued logic, network initialization, gate operations and alternate network representations, parallel versus serial mode simulation fault modelling, extension of multiprocessor systems, and simulation timing are discussed. Functional level networks, gate equivalent circuits, the prototype BDX-930 network model, fault models, identifying detected faults for BGLOSS are discussed. Preprocessor tasks, postprocessor tasks, executive tasks, and a library of bliss coded macros for GGLOSS are also discussed

    A Tale of Two Viruses: Why Smallpox was Eradicated and Polio Persists

    Get PDF
    The smallpox and poliomyelitis (polio) viruses were, at a time, one of the largest threats to global public health killing millions until global eradication campaigns were put into effect. Vaccination led to the eradication of smallpox and the elimination of polio for most of the world. However, polio continues to persist at endemic levels in Pakistan and Afghanistan. We developed ODE models of smallpox and polio to explore differences in transmission dynamics and determine if the underlying biology has made poliomyelitis more difficult to eradicate. Our model analysis shows there are multiple factors which should allow polio to have a lower threshold for eradication than smallpox: a lower threshold for herd immunity, and vaccines that are more effective at reducing infections and deaths. Thus, our model analysis leads us to conclude that the persistence of polio is due to the persistence of inadequate vaccination rates in the remaining polio-endemic countries

    Efficient Comparison of Massive Graphs Through The Use Of 'Graph Fingerprints'

    Get PDF
    The problem of how to compare empirical graphs is an area of great interest within the field of network science. The ability to accurately but efficiently compare graphs has a significant impact in such areas as temporal graph evolution, anomaly detection and protein comparison. The comparison problem is compounded when working with graphs containing millions of anonymous, i.e. unlabelled, vertices and edges. Comparison of two or more graphs is highly computationally expensive. Thus reducing a graph to a much smaller feature set – called a fingerprint, which accurately captures the essence of the graph would be highly desirable. Such an approach would have potential applications outside of graph comparisons, especially in the area of machine learning. This paper introduces a feature extraction based approach for the efficient comparison of large topologically similar, but order varying, unlabelled graph datasets. The approach acts by producing a ‘Graph Fingerprint’ which represents both vertex level and global level topological features from a graph. The approach is shown to be efficient when comparing graphs which are highly topologically similar but order varying. The approach scales linearly with the size and complexity of the graphs being fingerprinted

    Data Quality Assessment and Anomaly Detection Via Map / Reduce and Linked Data: A Case Study in the Medical Domain

    Get PDF
    Recent technological advances in modern healthcare have lead to the ability to collect a vast wealth of patient monitoring data. This data can be utilised for patient diagnosis but it also holds the potential for use within medical research. However, these datasets often contain errors which limit their value to medical research, with one study finding error rates ranging from 2.3%???26.9% in a selection of medical databases. Previous methods for automatically assessing data quality normally rely on threshold rules, which are often unable to correctly identify errors, as further complex domain knowledge is required. To combat this, a semantic web based framework has previously been developed to assess the quality of medical data. However, early work, based solely on traditional semantic web technologies, revealed they are either unable or inefficient at scaling to the vast volumes of medical data. In this paper we present a new method for storing and querying medical RDF datasets using Hadoop Map / Reduce. This approach exploits the inherent parallelism found within RDF datasets and queries, allowing us to scale with both dataset and system size. Unlike previous solutions, this framework uses highly optimised (SPARQL) joining strategies, intelligent data caching and the use of a super-query to enable the completion of eight distinct SPARQL lookups, comprising over eighty distinct joins, in only two Map / Reduce iterations. Results are presented comparing both the Jena and a previous Hadoop implementation demonstrating the superior performance of the new methodology. The new method is shown to be five times faster than Jena and twice as fast as the previous approach

    Integral equations for simple fluids in a general reference functional approach

    Full text link
    The integral equations for the correlation functions of an inhomogeneous fluid mixture are derived using a functional Taylor expansion of the free energy around an inhomogeneous equilibrium distribution. The system of equations is closed by the introduction of a reference functional for the correlations beyond second order in the density difference from the equilibrium distribution. Explicit expressions are obtained for energies required to insert particles of the fluid mixture into the inhomogeneous system. The approach is illustrated by the determination of the equation of state of a simple, truncated Lennard--Jones fluid and the analysis of the behavior of this fluid near a hard wall. The wall--fluid integral equation exhibits complete drying and the corresponding coexisting densities are in good agreement with those obtained from the standard (Maxwell) construction applied to the bulk fluid. Self--consistency of the approach is examined by analyzing the virial/compressibility routes to the equation of state and the Gibbs--Duhem relation for the bulk fluid, and the contact density sum rule and the Gibbs adsorption equation for the hard wall problem. For the bulk fluid, we find good self--consistency for stable states outside the critical region. For the hard wall problem, the Gibbs adsorption equation is fulfilled very well near phase coexistence where the adsorption is large.For the contact density sum rule, we find some deviationsnear coexistence due to a slight disagreement between the coexisting density for the gas phase obtained from the Maxwell construction and from complete drying at the hard wall.Comment: 29 page

    Interstellar Silicate Dust in the z=0.89 Absorber Towards PKS 1830-211: Crystalline Silicates at High Redshift?

    Full text link
    We present evidence of a >10-sigma detection of the 10 micron silicate dust absorption feature in the spectrum of the gravitationally lensed quasar PKS 1830-211, produced by a foreground absorption system at redshift 0.886. We have examined more than 100 optical depth templates, derived from both observations of Galactic and extragalactic sources and laboratory measurements, in order to constrain the chemical structure of the silicate dust. We find that the best fit to the observed absorption profile is produced by laboratory crystalline olivine, with a corresponding peak optical depth of tau_10=0.27+/-0.05. The fit is slightly improved upon by including small contributions from additional materials such as silica, enstatite, or serpentine, which suggests that the dust composition may consist of a blend of crystalline silicates. Combining templates for amorphous and crystalline silicates, we find that the fraction of crystalline silicates needs to be at least 95%. Given the rarity of extragalactic sources with such a high degree of silicate crystallinity, we also explore the possibility that the observed spectral features are produced by amorphous silicates in combination with other molecular or atomic transitions, or by foreground source contamination. While we cannot rule out these latter possibilities, they lead to much poorer profile fits than for the crystalline olivine templates. If the presence of crystalline interstellar silicates in this distant galaxy is real, it would be highly unusual, given that the Milky Way interstellar matter contains essentially only amorphous silicates. It is possible that the z=0.886 absorber towards PKS 1830-211, well known for its high molecular content, has a unique star-forming environment that enables crystalline silicates to form and prevail.Comment: 67 pages, 21 figures, accepted for publication in the Astrophysical Journa
    • …
    corecore