
Data Quality Assessment and Anomaly Detection Via Map / Reduce and Linked
Data: A Case Study in the Medical Domain

Stephen Bonner ∗, Andrew Stephen McGough ∗, Ibad Kureshi ∗, John Brennan ∗, Georgios Theodoropoulos ∗,
Laura Moss †, David Corsar ‡ and Grigoris Antoniou §
∗School of Engineering and Computing Sciences

Durham University, Durham, UK
{s.a.r.bonner, stephen.mcgough, j.d.brennan, ibad.kureshi, georgios.theodoropoulos}@durham.ac.uk

†University of Glasgow, Glasgow, UK
‡University of Aberdeen, Aberdeen, UK

§University of Huddersfield, Huddersfield UK

Abstract—Recent technological advances in modern health-
care have lead to the ability to collect a vast wealth of patient
monitoring data. This data can be utilised for patient diagnosis
but it also holds the potential for use within medical research.
However, these datasets often contain errors which limit their
value to medical research, with one study finding error rates
ranging from 2.3% – 26.9% in a selection of medical databases.

Previous methods for automatically assessing data quality
normally rely on threshold rules, which are often unable to
correctly identify errors, as further complex domain knowledge
is required. To combat this, a semantic web based framework
has previously been developed to assess the quality of medical
data. However, early work, based solely on traditional semantic
web technologies, revealed they are either unable or inefficient
at scaling to the vast volumes of medical data.

In this paper we present a new method for storing and
querying medical RDF datasets using Hadoop Map / Reduce.
This approach exploits the inherent parallelism found within
RDF datasets and queries, allowing us to scale with both dataset
and system size. Unlike previous solutions, this framework uses
highly optimised (SPARQL) joining strategies, intelligent data
caching and the use of a super-query to enable the completion
of eight distinct SPARQL lookups, comprising over eighty
distinct joins, in only two Map / Reduce iterations. Results
are presented comparing both the Jena and a previous Hadoop
implementation demonstrating the superior performance of the
new methodology. The new method is shown to be five times
faster than Jena and twice as fast as the previous approach.

Keywords-RDF; Medical Data; Map / Reduce; Joins;

I. INTRODUCTION

A. Big Data and Healthcare

Big data is a rapidly growing area of interest which offers
the potential for great advances but also comes with signifi-
cant challenges. Both the academic and industrial communi-
ties are generating and collecting data at an unprecedented
rate and scale. Analysis of these datasets represents a huge
opportunity to advance domain knowledge and informed
decision making [7]. However, despite a few early successes,
there remain many significant challenges in realising the full
potential of the knowledge buried within these datasets. The
volume and variety of the data generate technical challenges

in storing and processing. Additionally, assessing the quality
of the data – often referred to as the veracity of the data,
for example to identify any abnormal artefacts or missing
data, can be a daunting but crucial task to ensure that the
data remains useful for its intended task.

The biomedical and healthcare fields have the potential to
be one of the biggest contributors to, and benefactors from,
the big data phenomenon. The increasing digitalization of
healthcare has led to our ability to collect and store vast
amounts of diverse and complex biomedical data from a
plethora of sources and devices. The volume of available
data in these fields is increasing exponentially; ranging from
structured and unstructured clinical records to data streamed
from medical devices and social media. In 2012 the overall
volume of worldwide healthcare data was estimated to be
500 petabytes; this figure is predicted to grow 50-fold by
2050 to 25,000 petabytes [1]. Analysis of this data has the
potential to lead to advances in medical research, healthcare
management, service provision and patient treatment.

Computer science techniques provide a great opportunity
to deliver such advances and enable healthcare practitioners
to leverage clinical data. However, the size of the gener-
ated datasets, coupled with a limited capacity to store and
analyse them to extract knowledge, hinders their use within
healthcare. Additionally, inaccuracies are introduced due to
the nature by which the data is collected and can manifest
as unintentional patterns recorded in datasets. In clinical
settings, these artefacts are often a result of nursing or
medical interventions which are caused by patient movement
or by the administration of treatments [2]. It is important to
understand and remove such irregularities from the data so
that they do not adversely affect interpretation and analysis.
Previous studies have estimated that error rates in medical
databases can range from 2.3% to 26.9% [12]. Without
due consideration, low quality data can lead to sub-standard
patient treatment and have substantially adverse affects on
research findings. Existing approaches to the identification
of anomalous values are based around the identification of

extreme values [3]; however, these are often only based on
simplistic threshold checks. Although this goes some way
to avoiding certain errors (e.g. physiologically impossible
values), detailed domain knowledge is required in order
to identify other errors (e.g. cerebral perfusion pressure
readings taken from the neuro-intensive care unit that have
not been corrected for the position of a patient’s head).

Due to the size of the datasets generated, combined with
the complexity inherent within the medical domain, manual
curation of these datasets is unrealistic and automated ap-
proaches to engender a level of quality and trust within the
data are required.

B. Assessing Medical Data Quality

Numerous knowledge sets are now being made available
for equipment and sensors used to collect data from disperse
datasources. While several models have been defined for
representing sensor data, the W3C Semantic Sensor Network
(SSN) ontology [17] has emerged as ‘best practice’ for
publishing data online about sensors, the observations they
generate, and their deployments. Using the SSN ontology,
sensor datasets can be published according to Linked Data
principles [16] and integrated with relevant data described
using the Resource Description Framework (RDF) [18]. This
machine interpretable encoding allows machines to access,
browse, and reason about this data.

The medical dataset used in this study contains physio-
logical patient data taken from the critical care field and was
created by expressing the data against ontologies developed
in prior work [4]. Critical care medicine is one of the most
technology-led medical domains and sophisticated patient
monitoring equipment provides constant patient monitoring.
Generating large volumes of high frequency physiological
patient data. For example, monitors for vital signs can record
data such as arterial blood pressure, central venous pressure
and ECG (electrocardiogram) signals. Sampling rates can
range from once every couple of minutes (or hours) to
waveform quality (many times a second).

Previous work described an approach and supporting
framework, written in the Jena toolkit [23], for the identifi-
cation of errors in the medical dataset outlined above, using
linked data and semantic web technologies [4]. This work
enhanced the dataset with additional provenance metadata.
Including details of the machines used to collect the data,
the setting used for the recording and any data exportation
processes that may have been performed. Metadata, which
would indicate the presence of a physiological condition,
was also included. Eight queries were written that utilised
the new metadata embedded with the medical data to assess
the quality of the medical data. This provenance metadata
enables checks for values that are outside of expected normal
readings, abnormal reading which could be caused by a
specific medical disorder, and missing readings.

While the Jena based SPARQL approach was highly suc-
cessful in identifying errors in the data, it was unacceptably
slow for real world data (taking several hours per patient),
and unable to scale to dataset sizes over three million triples
– approximate volume of RDF data generated by a patient
per day. A Hadoop based approach was created with the
aim of replicating the functionality of the Jena approach,
but improving speed and scale [5]. This approach achieved
both of these objectives, however it required a costly data
pre-processing stage and was therefore inefficient.

C. Overview Of Our New Approach

In this paper we present a new approach for assessing the
quality of medical data using a novel algorithm written using
Map / Reduce for the Hadoop platform. The new approach
utilises the inherent distributed nature of Hadoop to scale
to dataset sizes of over one billion triples, on a modest
eight node cluster constructed from previous generation,
Commodity Off-The-Shelf components.

The approach utilises optimal query and join strategies –
along with the creation of a super-query – made possible by
studying the structure of the data and the original SPARQL
queries. Traditionally, each join in Hadoop would require
a complete Map / Reduce iteration. However, by using
these optimisations we are able to complete over 80 joins
in only two Map / Reduce iterations. By identifying and
extracting a series of triple groups that allows us to safely
segregate the data into smaller subsets. Additionally, the
identification and distribution to worker nodes (via Hadoop
distributed cache) of groups which are joined to frequently –
but small in size, allows for multiple joins on different keys
to be performed within the same Reduce task – massively
reducing the required number of Map / Reduce iterations.
The new approach is much faster and more scalable than
traditional semantic web technologies; requires no additional
data preprocessing and takes as input the raw RDF dataset.
By designing our solution to run on a completely vanilla
Hadoop install it removes the requirement for the end user
to install any additional software packages.

The main contributions of this paper are as follows:
• The idea of creating a super-query, a technique of amal-

gamating queries which share common join elements,
to avoid the needless re-computation of joins.

• A method for extracting subsets of triples from a larger
dataset. These subsets are determined by analysis of
the original SPARQL queries for triples which share
numerous common join keys.

• A broadcast join technique to push the small, but
frequently joined to subsets into the main memory of
each worker node. Allowing many of the joins to be
performed in-memory, without the need for multiple
Map / Reduce iterations.

• Demonstrating this approach has better performance
than both the Jena and previous Hadoop approach. The

new approach being over five times faster than the Jena
approach and twice as fast as our previous approach.

The rest of the paper is organised as follows: Section
II presents background and related work. Motivation is
presented in Section III. Section IV details our theoretical
optimisations before presenting the details of our Hadoop
implementation in Section V. Experimental evaluation and
results are in Section VI which are used to formulate our
conclusions and ideas for future work in Section VII.

II. BACKGROUND AND RELATED WORK

A. Linked Data Technologies

RDF is a W3C standard, specifically designed to express
the relationship between resources on the World Wide Web
[14]. An RDF Statement comprises three structural compo-
nents: a Subject (about which the statement is being made),
a Predicate (describing the relationship between Subject and
Object) and an Object (an attribute of the Subject) [14]. An
RDF triple, consisting of (s, p, o), is represented as a labeled
graph s

p−→ o.
The Simple Protocol and RDF Query Language

(SPARQL) provides a mechanism for querying RDF data
stored and is a W3C standard [8]. SPARQL can be compared
to the Structured Query Language (SQL), used to query
relational databases, as they share a similar syntax and logic.
The normative syntax for a SPARQL query is [13]:

SELECT ?v1...?vn WHERE t1...tn

with the SELECT ?v1...?vn component (of the query) repre-
senting distinct variables occurring in the input data and the
order in which they are to be returned. The WHERE t1...tn
component forms the Basic Graph Pattern (BGP) and is a
series of triple query patterns that must match the graph of
any input triples in order to be considered a match.

B. TripleStores

TripleStores are specialist data stores designed to store
and query RDF data. They currently face two key challenges:
system scalability and generality [21]. The most commonly
used TripleStores are based on Relational Database Man-
agement Systems (RDBMS) and are only able to run on
a single machine. Examples include Jena [23] and RDF-3x
[24]. As the size of RDF datasets are growing exponentially,
it is unlikely that a single machine will be able to efficiently
store or process this data deluge.

Due to this scalability issue, recent work has devel-
oped TripleStores which are able to scale across multi-
ple machines. Readers are referred to a recent literature
review covering developments in the field [25]. Many of
the approaches utilise the Apache Hadoop ecosystem or
other NoSQL systems to enable data and query parallelism.
Systems such as SHARD [19] or HadoopRDF [20], store
RDF in the Hadoop Distributed File System (HDFS) and
query the data via Map / Reduce tasks. Some systems, such

as TrinityRDF [21] or CumulusRDF [22], use Key-Value
stores as the basis for storage and querying. While these
systems are similar to the approach presented here, none of
them utilise the broadcast join method or perform any sort
of data analytics before performing the queries.

C. Hadoop and Map / Reduce Joining Strategies

Hadoop is an open source framework for storing and
processing of internet-scale data in a distributed manner.
Hadoop comprises two main components: the Hadoop Dis-
tributed File System (HDFS), used for storing data across
a Hadoop cluster and the Map / Reduce programming
framework, used to process the data [26]. A standard Map /
Reduce pass consists of two distinct phases: a Mapper and
a Reducer. The Mapper function processes the input data,
performs a user-defined algorithm, then outputs an interme-
diate set of key / value pairs. These intermediate results are
grouped on the key to ensure that all values associated with
that key are sent to the same Reduce function. The Reducer
function then performs the final processing and outputs the
resulting set of key / value pairs [26].

Any system which is designed to complete SPARQL
queries must be able to compute data joins. However,
performing efficient joins in a Map / Reduce environment is
particularly difficult to achieve [10].

Map / Reduce was designed to process large datasets
by looking at each element in isolation – processing each
sequentially. Thus joining two potentially massive datasets
falls well beyond Hadoop’s design remit. While joins in Map
/ Reduce are complicated, several strategies have emerged
that make them possible [6]. These join strategies include:
Reduce-Side, Broadcast and Cascade joins.

The Reduce-Side join is a simple approach for joining
data and is implemented using a complete Map / Reduce
iteration. The basic workflow for the Reduce-Side join is
as follows: the Map function iterates through all records,
tagging them with their source dataset and sets the Map
output key as the join key. This will ensure that all values
featuring that key are sent to one Reduce function. The
Reduce function can then join the required elements and
produce the final output. The logic for a Reduce-Side join
for two datasets is shown below:

(P (a, b) ./ Q(b, c)),

where P and Q are two separate datasets each with two
records (a, & b and b & c) and a single common record –
b. The join can be achieved by first iterating through both
datasets in the Map function and emitting b as the key and
a as the value for P, and b as the key and c as the value for
dataset Q. The values would be grouped via the common key
and the Reduce function would be presented with the key
/ value pair of b(an, cn). The reduce function would then
join the values together to create the final join result. The

major disadvantage of this method is that all data required
for the join will be passed through the Map / Reduce shuffle
phase, thus incurring a costly network transfer stage.

While this approach is suitable for joining two elements,
joining multiple elements that depend upon the output of
previous joins is not possible. However, using a technique
called a Cascade join it is possible to process such situations
[6]. The Cascade join is a method that allows multiple
dependant relations to be joined via Map / Reduce. A
Cascade join is effectively a pre-determined set of Reduce-
Side joins, processed in an iterative manner [6]. The logic
behind the Cascade join can be demonstrated by joining of
three datasets:

(R(a, b) ./ S(b, c) ./ T (c, d)).

Using a Reduce-Side join, it is possible to join dataset R
and S via the join key b:

(R(a, b) ./ S(b, c)→ IntermediateResult(a, b, c)).

Then by employing a second Reduce-Side join it is possible
to join the Intermediate result to dataset T via the join key
c to create the final result:

(IntermediateResult(a, b, c) ./ T (c, d)
→ FinalResult(a, b, c, d)).

One alternative and less used join approach is the Broadcast
join. This can be used if one of the datasets to be joined
is of a small enough size, such that it could be stored in
memory. A Broadcast join functions by loading the smaller
dataset into memory of all machines on which a join will
be performed [9]. Each machine can then probe the dataset
loaded in-memory to check for possible joins from data
either in the Map or Reduce phase. This approach removes
the need for costly cascade joins.

III. MOTIVATION AND ANALYSIS

This section will explore some of the motivations behind
why a new approach is required. We use graph theory
methods to analyse both the RDF data and SPARQL queries.
We then use the results to aid the creation of the highly
optimised query solution detailed in Section IV and V.

A. Analysis Of The RDF Graph Structure

As RDF – here used to store the knowledge sets for
sensors, physiological conditions and the collected patient
data – is a graph-based data model, network and graph
analysis may be performed upon it. Any understanding
gained from this analysis can be used to guide optimisation
techniques, thus leading to more optimal query execution.
In way of motivation for our data segregation approach we
analyse one of our anonymised sample datasets.

Let G = (V,E) be a graph which contains all of the
RDF triples representing our RDF dataset, where the set of
vertices V is a number of RDF subjects or objects and the
set of edges E are a number RDF predicates. The graph G

comprises RDF triples (s, p, o), with the subject and object
being nodes and the predicate being edges s

p−→ o. This
graph will be explored throughout this section.

The RDF dataset used for this analysis contained
2,733,290 unique triples, which resulted in a graph of
595,597 unique vertices and 2,733,290 edges. Analysis of
this dataset reveals a number of interesting properties. Using
graph theory we can analyse the vertex degrees within
the dataset, where a vertex degree value is defined as the
number of edges connecting to a particular vertex (subject or
object). The degree value dv of a certain vertex v, provides
a quantification of how connected v is within the overall
graph. As a graph created from RDF is inherently direc-
tional, both the in-degree dinv and out-degree doutv should be
considered independently. Further the degree distribution is
the proportion of vertices v ∈ V with a certain degree value
dv = d. The degree distribution provides an overall view of
the level of connectivity within a graph.

Table I illustrates the top ten nodes when ordered by dinv .
With the most connected node being the patient’s unique
identifier. This is followed by a series of nodes which have
identical dinv values. It is interesting to note that all the nodes
with a high dinv have a low or nonexistent doutv . This implies
that these nodes are RDF objects, which have many unique
subjects connecting to them. In the case of the top ten nodes
illustrated here these are all metadata nodes describing the
subject they are related to. We can later exploit this for
creating our Broadcast joins.

Table I
NODES SORTED BY dinv

Node Name dinv doutv

<Patient/15> 158300 1
<PhysiologicalObservation> 158299 0
<ssn/Observation> 158299 0
<PatientData/Reading> 158299 0
<PhysiologicalObservationValue> 158299 0
<ObservationValue> 158299 0
<PhysiologicalSensorOutput> 158299 0
<SensorOutput> 158299 0
<ObservationCollection> 39536 0
<Timepoint> 39536 0

B. Implications Of Performing SPARQL Queries

In SPARQL variables are represented via a ? < name >
syntax. A SPARQL query will take the general format of:

SELECT ?v1...?vn WHERE t1...tn

where ?v1...?vn represent the variables we wish to return
from the query. The WHERE clause defines the the patterns
which need to be matched within the dataset. If a variable ex-
ists more than once within the WHERE clause then all must
be satisfied. If multiple variables exist within the WHERE
clause then they will be joined together via their common
variable(s). As an example, consider the five patterns –

commonly referred to as Basic Graph Patterns (BGP) –
related to ?obs in the example SPARQL query (Listing 1).
Each ?obs variable found in the dataset, would be compared
to the five patterns and only if it satisfies all five patterns
would it be considered ‘complete’ and therefore retained.
For example ?obs ssn : observedProperty ?p would only
match an ?obs variable where a triple exists with ?obs as
the subject, ?p as the object and ssn : observedProperty is
the predicate. Further complete ?range variables would be
joined with complete ?obj variables if a common ?p variable
exists between both.

To better visualise the logical processes involved in join-
ing, Figure 1 shows a graph which would complete the
sample SPARQL query in Listing 1. In this graph a vertex is
either a subject or an object, with the directed edges between
any two nodes indicating a predicate between them. The
size of a vertex is determined by its total degree value. The
graph is coloured to illustrate the various common matching
patterns of variables across the query. For example all
variables which are joined on the ?obs subject are coloured
black, whilst variables joined on the ?range subject are blue.
Key vertices which serve as bridges or joins between the
variable groups are coloured in red. Computationally, each
edge represents a single join – note that each pattern match
is performed as a single join – and all must be completed
before the final query logic can be assessed.

Listing 1. An Example SPARQL Query
SELECT ? obs ? p ? h t ime ?max ? va lue WHERE{
? r a n g e a med : Accep tab l eRange .
? r a n g e med : c l i n i c a l R a n g e M a x ?max .
? r a n g e pd : h a s P a r a m e t e r ? p .

? obs a mo : P h y s i o l o g i c a l O b s e r v a t i o n ;
? obs s s n : o b s e r v e d P r o p e r t y ? p .
? obs s s n : o b s e r v a t i o n R e s u l t T i m e ? t ime .
? obs pd : atHumanTime ? h t ime .
? obs s s n : o b s e r v a t i o n R e s u l t ? a1

? a1 s s n : hasVa lue ? a2 .
? a2 pd : r e a d i n g V a l u e ? va lue .

FILTER (? va lue > ?max) }

The FILTER clause within the query (Listing 1) is check-
ing if a particular recorded value is above the maximum
permitted value by the hardware which recorded it. This
clause is only enacted once all the completed variables have
been extracted. This whole query process is computationally
expensive as the number of attempted joins is a multiple of
the number of triples within the dataset being queried. In
our running example there would be eleven joins per query.
Note that the dotted line in Figure 1 segregates the joins
into those for nodes with low doutv values – which can be
performed using in-memory joins – and nodes with high

Figure 1. A Graph Of A Single Complete SPARQL query

doutv values – which require Reduce-Side joins.
Although we only present one query here we need to

perform many such queries over our dataset. Though many
of these queries are very similar in nature. For example, a
second query may only vary the FILTER line and associated
BGP from Listing 1. However, conventional approaches
would perform both queries independently – thus repeating
all of the joins.

IV. THEORETICAL MODEL

In this section we will explore some of the theoretical
ideas underpinning our modified Hadoop based approach.
We start with a brief overview of this Hadoop approach.
Firstly, as the set of queries share many common elements, a
super-query was created to avoid the re-computation of joins
common among all the queries. This super-query maps out,
for the algorithm, which RDF triples need to be extracted
from the larger dataset and how they should be joined
together to create the final results. Secondly, the RDF data
is segregated into smaller sub-sets based on the triple group
size and degree. This enables groups which are small in
size, but are joined to frequently, to be broadcast to all the
nodes in the Hadoop cluster. Here we quantify that these
groups must be small enough in size to fit into the Hadoop
distributed cache, which has a default maximum size of 10
Gigabytes. These groups can then be loaded into memory on
all the worker nodes and can be joined to the large datasets
as needed. This allows multiple joins to be performed within
the same Map / Reduce iteration.

A. Generation of Super-Queries

As discussed in section I-B, the original functionality of
the Jena based approach comprises eight SPARQL queries

which assess the data quality against several metrics. Many
of these queries are almost identical, with only one or two
elements changing. For example, the only difference be-
tween the query assessing if the value is below or above the
values permitted, is one line [15]. Currently each query is run
independently against the data. This is highly unoptimised
as all of the numerous common joins, between any queries,
will be recomputed, as seen in section III-B. A more optimal
solution would be to combine the queries so that the join
is performed only once. Both the min and max queries
could be completed by just adding an extra vertex to the
graph in Figure 1, which contains the information for the
minimum permitted value. Two separate conditional logic
steps could then be computed to complete both queries.
This method, effectively the creation of a super-query, would
allow completion with the addition of just one extra join.

B. Optimisation of Super-Query Through Segregation

The super-query solves the issue of recomputing identical
joins across a set of queries, however it creates a new
problem as it is inherently a large and complex SPARQL
query. Which would be difficult to complete using Hadoop
without further optimisations.

To enable more efficient computation, a large graph rep-
resenting many RDF triples can be broken down into more
manageable sub-graphs. To guide the creation of the sub-
graphs, a certain criterion is needed to partition the graph.
The criteria chosen for this work is that of triple groups
(TG). Our definition of a triple group is a selection of triples
taken from the larger dataset which, guided by the SPARQL
query, have more than one join via a common element. From
the example query in Listing 1, it is possible to visually
identify 3 unique triple groups; these being the ?range, ?obs
and ?a2 groups. As an example, the ?range group would
be a subset of triples which matched any of the patterns
beginning with ?range in the SPARQL query.

Formally, n TGs can be identified as follows:

TGn = {(v, ∗, ∗) ∈ J ∪ (∗, ∗, v) ∈ J : |Φv| > 1, v ∈ V },

where TGn is a subgraph of the complete SPARQL query,
J is the set of all Base Graph Patterns within the WHERE
clause of the SPARQL query, V is the set of all variables
found within the WHERE clause, (v, ∗, ∗) denotes that v
is the subject of a BGP, likewise (∗, ∗, v) implies v is the
object, and Φ is defined as:

Φv = {v ∈ V : (v, ∗, ∗) ∈ J , (∗, ∗, v) ∈ J},

i.e. the set of all BGP’s which contain v. Thus partitioning
the RDF dataset into smaller subsets based on the triple
groups and satisfying our second goal.

Once an identification of the TG’s has been performed
it is now necessary to determine which should become
in-memory broadcast joins and which should be Reduce-
Side joins. This can be selected based on the number of

Table II
TRIPLE GROUP DISTRIBUTION

Triple Group Name Number Of Elements
?obs 3,426,188

?range 518
?cs 446

unique triples containing each v ∈ V – small numbers
indicating an in-memory broadcast join. The determination
of the number of unique triples can be performed using a
simple Map / Reduce algorithm. For example, we ran this
against two real-world datasets which were combined with
the instrument knowledge set and physiological knowledge
set. Table II depicts the results for the three main TG
groups – those of ?range, ?obs and ?cs which reflect the
triple groups used in all the SPARQL queries [15]. The ?cs
group has not previously been mentioned but it contains
information pertaining to physiological conditions. Like the
?range group, it is constant across datasets.

The Table shows that the distribution of the triple groups
is massively skewed towards the ?obs group, whilst both
the ?range and ?cs groups contain very few instances. This
is key from an optimisation point of view, as it means the
?range is reused and joined frequently against many unique
?obs elements. We exploit this skewed trait in the data by
pushing smaller triple groups, such as ?range, into main
memory to massively reduce the number of joins required.

V. HADOOP IMPLEMENTATION

In this section, details of the approach we developed to
query medical datasets via Hadoop are explored. There were
many reasons why Map / Reduce was chosen as the basis
for the new approach. Two of the most compelling reasons
being that it is inherently parallel, whilst also reducing the
complexity for developing a distributed application.

Previous state-of-the-art systems which query RDF via
Hadoop are often limited to just performing SPARQL op-
erations [19], [20]. However, there are a wide range of
other useful data metrics and operations which can not be
represented or extracted using SPARQL logic. These include
metrics such as the number of times a certain query was
completed, or operations such as creating a new subset of
data conforming to a certain query. Also the number of
joins required by complex queries makes the approach of
systems like SHARD [19] unsuitable – as they rely on a
series of cascade reduce-side joins where each join requires
a complete Map / Reduce iteration.

To perform these complex queries on massive volumes of
medical data, a new approach, based on our theoretical opti-
misations, has been created. This was intentionally designed
with the constraint to work on a vanilla Hadoop install,
requiring no additional software – maximising compatibility
and portability. The algorithm is also compatible with Map
/ Reduce v1 and v2.

The approach required the RDF data to be stored on the
HDFS in N-Triple serialisation. Previous work has shown

the N-Triple serialisation of RDF to be the most suitable for
processing via Hadoop, as it represents a complete triple via
a single line of text [11].

A. Algorithm Design Overview

This approach requires no pre-processing of the RDF
data and takes the raw unaltered medical RDF dataset as
input. Our previous work showed how costly the data upload
stage can be [5] – requiring a data pre-processing stage,
comprising two additional Map / Reduce iterations, before
the query stage. As the data pre-processing stage requires
traversing the entire dataset, leading to large portions of the
dataset being exchanged over the network, this lead to an
extremely slow approach.

Removal of the data pre-processing stage along with the
realisation that repeated (almost) identical SPARQL queries
consumed a significant proportion of the execution time
formed the motivation for this work. Our new algorithm is
able to perform all of the joins required in just two phases,
these being the data selection and the join phase.

Where each phase can be realised as a single Map /
Reduce iteration as outlined below:

• Selection Phase is used as a data reduction phase along
with the identification of the triples which will become
part of the in-memory Broadcast join. These triples are
exchanged between nodes as part of the join phase.

• Join Phase performs the final joins of the in-memory
data with the locally held data, along with the genera-
tion of the final results from the query.

This reduction to just two Map / Reduce iterations is
achieved through a combination of our super-query and
query segregation approaches.

The use of the flexible Map / Reduce platform also means
that we have greater control over the low quality data once it
has been identified. For example any data which has failed
one of the data quality assessment metrics is split into a
file on the HDFS based upon the failed metric. This allows
the low quality data to be separated from the high quality
data. Additionally, we can insert new RDF triples back into
the original dataset which will identify any bad data so that
it can be excluded from future use. Alternatively, we can
delete the data entirely from the original, leaving a clean
dataset for future analysis.

B. Selection and Triple Group Creation Phase

This phase performs two main functions and is imple-
mented as a single Map / Reduce iteration. Firstly it traverses
all of the triples stored on the HDFS and selects only those
required – determined by the super-query. Secondly, the
selection stage creates the triple groups and stores them as
separate files on the HDFS ready for use in the join stage
of the query algorithm. The key advantage of creating the
approach using Hadoop, is that this map stage utilises data
locality to run in parallel across a cluster.

The selection of the required triples is performed in the
map task. Here triples are selected if they conform to any
of the patterns in the super-query. To reduce the amount of
data being transferred over the network via the shuffle and
sort phase, only the required part of the triple is passed to
the reduce phase. The output key of the map function is set
as the join key and the output value is set as the required
triple element plus a value denoting the join key to be used.

As an example, the selection phase for the small SPARQL
query shown in Listing 2 would search the input data for
any triples which matched any of the three required patterns.
For the second pattern, the algorithm would search the input
dataset and check each triple to see if the predicate is equal
to med : clinicalRangeMax.

Listing 2. A small SPARQL query
? r a n g e a med : Accep tab l eRange .
? r a n g e med : c l i n i c a l R a n g e M a x ?max .
? r a n g e pd : h a s P a r a m e t e r ? p

Once a suitable triple has been located, the subject ele-
ment matching ?range would be set as the Hadoop output
key and the object element matching ?max would be set as
the Hadoop output value. As a reduce function is spawned
for each unique Hadoop key value this ensures that all the
values for a particular instance of ?range are present in the
same reduce function and thus can be joined together via the
reduce side join method. Once the reduce of the selection
phase has finished, all of the individual triple groups have
been created and are stored on the HDFS ready for the join
phase.

C. Join Phase

The join phase has two main functions and is implemented
as a complete Map / Reduce iteration. Firstly it performs the
required joins between the various triple groups in order to
compete the queries. Secondly, it formats and returns the
final output. The input to this stage is the data emitted by
the selection stage. Using a broadcast-join enables numerous
elements to be joined together within the same task.

To perform the broadcast-join, the smaller triple group
files created in the selection phase are distributed to all the
reducers running in the join phase. This uniform distribution
of files is achieved by making use of the distributed cache
feature, allowing files under 10 Gigabytes to be made
accessible by any Map or Reduce task running upon any
node within the cluster. The files pushed to the reduce phase
via the broadcast join, are extracted into Hashtables, which
allows for extremely fast lookups when checking for element
membership. The broadcast join method is particularly appli-
cable in this case, since the data is massively skewed towards
one triple group. This group, which always forms the ?obs
part in any query, is far too large to be stored in memory so
must be joined via a reduce-side join. However, the smaller
triple groups can be joined to the larger ?obs group the

broadcast join technique within the same reduce function.
The use of the broadcast join to access the previously created
triple groups and then load them into memory is the third
main contribution of this paper.

These concepts are implemented in the following manner.
Firstly, the map phase, which takes as input a file containing
the ?obs results. The map phase decides if the current input
is an ?obs record or a ?a2 record based on length. These
two triple groups are then joined via the common element
and passed to the reduce phase. In the reduce phase, the two
groups will be available in the same job due to the shuffle
and sort phase. The system then performs the rest of the
joins via the broadcast method. As explained above the files
which are to be joined via the broadcast join method are
all extracted from the Hadoop distributed cache and loaded
into Hash-tables in main memory. Then the different triple
groups can be joined via any common elements. Each of the
joins performed via the broadcast method would otherwise
have been completed via a separate reduce-side join, as
they are all performed upon individual elements. Once the
required joins are complete, the algorithm then performs
the conditional logic determined by the original queries.
The logic conditions include checking values against a pre-
determined range. Once the algorithm finds a value that does
not meet the requirements, it will emit the required value and
the other associated values back onto the HDFS. This stage
again makes use of multiple outputs, to split the output from
each conditional logic check into its own file on the HDFS.
This allows a user to more easily see and access the values
which have failed a particular logic check.

VI. EXPERIMENTAL EVALUATION AND RESULTS

In this section we present the results from running our
new approach on a small Hadoop cluster. The results show
the work to be both faster and more scalable than the Jena
and previous Hadoop implementation. This validates the
effectiveness of the work detailed in this paper and is the
last major contribution of this paper.

A. Testing Environment and Methodology

The different approaches were tested on a small devel-
opment Hadoop cluster, comprising a head node with eight
data nodes. All machines ran an identical software stack of
CentOS 6.5 64-Bit, Java OpenJDK 1.7.0 51 and Hadoop
1.2.1. All nodes had identical hardware – an Intel Q8400
quad-core processor, 8GB of Memory, a 250GB (7200 RPM)
HDD and communicated via a dedicated Gigabit switch.

Due to the sensitivity of the original datasets, only a small
medical dataset was available so additional records were
synthetically generated [5]. To produce the new data, a Map /
Reduce algorithm was developed which generated new RDF
data based upon an input of real world medical RDF data.
The algorithm retains the structure and distribution from the

real world dataset, but inserts new randomly generated val-
ues for the variable triple elements. The algorithm exploits
knowledge of the datasets so that it does not alter triples
which are consistent across all datasets, for example data
about the technical capabilities of clinical sensor equipment.

B. Phase Performance Across Eight Nodes

Figure 2 shows the query performance of our new ap-
proach across the 8 node cluster. This result represents the
total run time as there is no data formatting stage required.
The Figure illustrates the proportion of the total run time
required for each phase, with the total runtime being a sum
of the two. It can be seen that the selection phase represents
the vast majority of the total run time of the approach. This
phase increases nearly exponentially, whilst the join phase
grows much more slowly. The lack of an index for data
stored on the HDFS requires the selection phase to traverse
the entire dataset and then shuffle the required elements over
the network to a reduce task. This explains why the time
required to complete the phase increases much faster than
for the join phase and is the main limitation of using Hadoop.

C. Performance Scalability Across Cluster Size

Figure 3 shows how our new approach scales across a
range of cluster sizes. Only the eight node cluster was able
to complete the queries on 1000M tripes, with all other
cluster sizes having insufficient storage space available on
the HDFS. The runtime for four and eight nodes is quite
similar, with an increase to eight nodes only resulting in a
modest decrease in runtime. This result can be explained by
the extra nodes over-saturating the network connection, as
more nodes result in an increase in the amount of data being
shuffled over the network.

32M 64M 128M 256M 512M 1024M

Number of Triples (M)

Ti
m

e
(M

in
s)

0
10

0
20

0
30

0
40

0
50

0

Selection Phase
Join Phase

Figure 2. Query Performance Across Eight Nodes

Figure 3. Performance Scalability Across Cluster Size

Figure 4. Comparison Between Approaches

For comparison, the results from running Jena on a single
node from the cluster is also presented. Jena was unable to
process dataset sizes over 128M triples as an upload request
caused the system to hang. It can be seen that the Hadoop
approach, run on any cluster size, is considerably faster than
Jena. With the Hadoop approach able to query over 1000M
triples in less time taken by Jena to query just 128M. It is
worth noting that all the results were obtained from previous
generation hardware and thus do not accurately represent
performance we would expect when running on a modern
dedicated Hadoop cluster with fast network – as Hadoop is
know to be network limited.

D. Approach Comparison

Figure 4 shows the total run time on the two node cluster
for both the new and previous approach [5]. The Figure
also plots the speed-up factor between the previous and
current approach. Our new approach (Current Approach)
does not require the upload stage required in our previous
approach. It can be seen that this is consistently faster
across all dataset sizes than the previous approach. With
the current approach demonstrating a speedup of 2 at a
dataset size of 512M triples. Promisingly, the speedup factor
appears to be increasing marginally, proportional to dataset
size, demonstrating the scalability of the approach presented
in this paper. The decrease in run time between the two
approaches can be attributed to the optimisation techniques
utilised to remove the requirement of the data being pre-
processed and the new query approach.

VII. CONCLUSION AND FURTHER WORK

A. Conclusion

With medical scientists increasing their research into
predictive and prescriptive modelling it is of upmost im-
portance that the available datasets are accurate and error
free. However, it is also important that these datasets can be
made available in a timely manner – especially significant
for diagnosis. This work has presented a novel methodology
of processing medical monitoring datasets, in linked data
format, to assess for accuracy and validity. Building upon
previous work, this approach is not only faster than previous
implementations, in Jena and Hadoop, but also demonstrates
clear potential to scale better than other approaches as the
dataset size grows. This methodology involves extracting
smaller groups of triples from a larger dataset and using
a broadcast join technique to hold frequently called groups
in memory. These are exploited as part of a super-query –
merging multiple similar queries. This removes the costly
data upload stage and greatly improves the algorithm’s
performance. Crucially, this new approach demonstrates a
five times speedup over the Jenna approach and is twice as
fast as our previous work.

These approaches have, to the best of our knowledge, not
been attempted in current literature and can be adapted to
other types of linked datasets. The clearly superior perfor-
mance will allow for more and larger medical datasets to
be checked for errors and inconsistencies leading to more
accurate and reliable datasets for medical and diagnostic
research. We hope that this work showing how utilising data
analytic and graph theory techniques can inform a highly
optimal query solution will inspire further research.

B. Further Work

The new Hadoop approach has only been tested on a small
cluster using a comparatively small medical dataset size.
Further investigation is required to see if this approach would
continue to scale as cluster size is increased. Additional

work would also be required to assess if the approach would
remain effective on dataset sizes past one billion triples.

Further research work could be performed as to the
optimal size of triple groups added to the distributed cache.
In this work the frequently joined to triple groups are under
one gigabyte in size so it would be interesting to study how
performance is affected as more triples are added to the
distributed cache. In addition other metrics could have been
investigated to gain a deeper insight into the performance.
These include metrics related to the Hadoop join key and
more detailed comparisons of the two approaches.

Currently this work has been tailored specifically to
process medical RDF datasets and pre-determined SPARQL
queries. However future research is needed to investigate the
possibility of creating a generic framework for processing
RDF datasets via Hadoop. The key aspect of this generic
framework would be that the optimisations explored here
would be automatically performed. Specifically this means,
researching a way of automatically creating the triple groups,
assessing the frequency of any intergroup joins and then
pushing the small but frequently joined groups into the
distributed cache for the broadcast join.

ACKNOWLEDGMENT

The authors would like to acknowledge the use of the
University of Huddersfield Queensgate Grid in carrying out
this work. We would also like to thank EPSRC for continued
funding. In addition we would like to acknowledge the
clinical input into our earlier work from Prof. John Kinsella
(Glasgow Royal Infirmary) and Dr. Ian Piper (Institute of
Neurological Sciences, New South Glasgow Hospital).

REFERENCES

[1] Intel White Paper. Bigger Data for Better Healthcare 2013.
[2] Olson, D. McNett, M. Lewis, L. Riemen, K and Bautista, C.

Effects of nursing interventions on intracranial pressure Am J
Critical Care. 22(5):4318, 2013 Sep.

[3] Nizami, S. Green, J.R. and McGregor, C. Implementation of
Artifact Detection in Critical Care: A Methodological Review
In IEEE Reviews in Biomedical Engineering. 127-142, 2013.

[4] Moss, L. Corsar, D. Piper, I. and Kinsella, John Trusting
Intensive Care Unit (ICU) Medical Data: A Semantic Web
Approach In . Proceedings of 14th International Conference on
Artificial Intelligence in Medicine, (AIME 2013), pages 68-72,
Springer, 2013.

[5] Bonner, S. Antoniou, G. Moss, L. Kureshi, I. Corsair, D
and Tachmazidis, I. Using Hadoop To Implement a Seman-
tic Method Of Assessing The Quality Of Research Medical
Datasets In . Proceedings of the 2014 International Conference
on Big Data Science and Computing, BigDataScience 2014,
ACM, 2014.

[6] Afrati, F and Ullman, J. Optimizing joins in a map-reduce
environment. In Proceedings of the 13th International Con-
ference on Extending Database Technology, EDBT ’10, pages
99–110, New York USA, ACM, 2010.

[7] Kaisler, S. Armour, F. Espinosa, J. A. and Money, W. Big data:
Issues and challenges moving forward In Hawaii International
Conference on System Sciences, HICSS 2013, pages 995-1004,
IEEE, 2013.

[8] DuCharme, B. Learning SPARQL , O’Reilly Media Inc, 2013.
[9] Lin, J and Dyer, C. Data-Intensive Text Processing with

MapReduce. Synthesis Lectures on Human Language Tech-
nologies. Morgan and Claypool Publishers, 2010.

[10] Miner, D and Shook, A. Mapreduce Design Patterns Building
Effective Algorithms and Analytics for Hadoop and Other
Systems. O’Reilly, 2012.

[11] Myung, J. Yeon, J and Lee, S. Sparql basic graph pattern
processing with iterative mapreduce. In Proceedings of the
2010 Workshop on Massive Data Analytics on the Cloud,
MDAC ’10, New York, USA, ACM, 2010.

[12] Goldberg, S. Niemierko, A and Turchin, A. Analysis of
data errors in clinical research databases. In AMIA Annual
Symposium Proceedings, volume 2008, page 242. American
Medical Informatics Association, 2008.

[13] François Goasdoué, Zoi Kaoudi, Ioana Manolescu, Jorge
Quiané-Ruiz, and Stamatis Zampetakis. CliqueSquare: efficient
Hadoop-based RDF query processing. In BDA’13 - Journées
de Bases de Données Avancées, Nantes, France, 2013.

[14] W3C. Rdf primer, http://www.w3.org/TR/2004/REC-rdf-
primer-20040210/, 2004.

[15] Orignal SPARQL queries.
http://homepages.abdn.ac.uk/dcorsar/pages/medical/index.php

[16] Linked Data http://www.w3.org/DesignIssues/LinkedData.html
[17] W3C Semantic Sensor Network Ontology.

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
[18] Resource Description Framework http://www.w3.org/RDF/
[19] Rohloff, K and Schantz, R. High-performance, Massively

Scalable Distributed Systems Using the MapReduce Software
Framework: The SHARD Triple-store. In Programming Sup-
port Innovations for Emerging Distributed Applications, New
York, USA, ACM, 2010.

[20] Du, J. Wang, H Ni, Y and Yu, Y. HadoopRDF: A Scalable
Semantic Data Analytical Engine In Proceedings of the 8th
International Conference on Intelligent Computing Theories
and Applications ICIC’12, Springer, 2012.

[21] Zeng, K. Yang, J. Wang, H. Shao, B and Wang, Z. A
Distributed Graph Engine for Web Scale RDF Data In
Proceedings of the 39th international conference on Very Large
Data Bases PVLDB’13, ACM, 2013.

[22] Ladwig, G and Harth, A. CumulusRDF: linked data man-
agement on nested key-value stores In The 7th International
Workshop on Scalable Semantic Web Knowledge Base Systems
SSWS’11, 2011.

[23] McBride, B. Jena: a semantic Web toolkit In IEEE Internet
Computing 2002.

[24] Neumann, T and Weikum, G. RDF-3X: a RISC-style engine
for RDF In Proceedings of the VLDB Endowment PVLDB’08,
ACM, 2008.

[25] Kaoudi, Z and Weikum, G. RDF in the clouds: a survey In
The VLDB Journal , Springer, 2014.

[26] White, T. Hadoop: The definitive guide O’Reilly Media Inc,
2012.

