146 research outputs found

    Information Power Efficiency Tradeoffs in Mixed Signal CMOS Circuits

    Get PDF
    Increasingly sensors for biological applications are implemented using mixed signal CMOS technologies. As feature sizes in modern technologies decrease with each generation, the power supply voltage also decreases, but the intrinsic noise level increases or remains the same. The performance of any sensor is quantified by the weakest detectable signal, and noise limits the ability of a sensor to detect the signal. In order to explore the trade-offs among incoming signal, the intrinsic physical noise of the circuit, and the available power resources, we apply basic concepts from information theory to CMOS circuits. In this work the circuits are modeled as communication channels with additive colored Gaussian noise and the signal transfer characteristics and noise properties are used to determine the classical Shannon capacity of the system. The waterfilling algorithm is applied to these circuits to obtain the information rate and the bit energy is subsequently calculated. In this dissertation we restricted our attention to operational transconductance amplifiers, a basic building block for many circuits and sensors and oftentimes a major source of noise in a sensor system. It is shown that for typical amplifiers the maximum information rate occurs at bandwidths above the dominant pole of the amplifier where the intrinsic physical circuit noise is diminished, but at the same time the output signal is attenuated. Thus these techniques suggest a methodology for the optimal use of the amplifier, but in many cases it is not practical to use an amplifier in this manner, that is at frequencies above its 3dB cutoff. Further, a direct consequence of applying the classic waterfilling algorithm leads to the idea of using modulation techniques to optimize system performance by shifting signals internally to higher frequencies, providing a practical means to achieve the information rates predicted by waterfilling and at the same time maintaining the real world application of these amplifiers. In addition, the information rates and bit energy for basic CMOS amplifier configurations are studied and compared across configurations and processes. Further the additional design constraints formed by adding the information rate and the bit energy to traditional design characteristics is explored

    The Racial Rhetoric of Cuteness as Decorative Decorum

    Get PDF
    This work looks at the trope of cuteness as a means of investigating the topological phenomena of race and public space, particularly in regards to African American rhetorical modes of visual and spatial practice. By introducing a sociological coinage known as the \u27teddy-bear effect,\u27 this work explores how racialized expressions of cuteness give off the impression of a demurring civility surrounding the social expectations associated with the cultural norms of gender and class. As a preferred characteristic of information design and strategically deployed for the tactic of racialized passings in the face of increasingly regulated forms of \u27post-racial\u27 gate-keeping and contemporary color politics, this research interrogates how racial cutification animates certain generational differences within African American communities while simultaneously shaping mainstream conceptualizations of what constitutes appropriate public decorum. Of specific concern is the cultural logic of \u27minoritization\u27 on people of color as far as the techno-spatial processes of race and racism for how it serves as a means by which global citizenship continues to be fashioned, especially in civic politics, black women\u27s hair care and identity, social networking, and multimodal writing and pedagogy. Finally, this work asserts the ascendance of cuteness as a paradoxical sign of excess and miniaturization related to notions of multicultural authority and power and tracks the influence of this popularly imagined iconography of African Americanicity across the public sphere

    Guest Editorial Special Issue on Selected Papers From IEEE ISCAS 2020

    Get PDF
    No abstract available

    Modeling Emerging Semiconductor Devices for Circuit Simulation

    Get PDF
    Circuit simulation is an indispensable part of modern IC design. The significant cost of fabrication has driven researchers to verify the chip functionality through simulation before submitting the design for final fabrication. With the impending end of Moore’s Law, researchers all over the world are looking for new devices with enhanced functionality. A plethora of promising emerging devices has been proposed in recent years. In order to leverage the full potential of such devices, circuit designers need fast, reliable models for SPICE simulation to explore different applications. Most of these new devices have complex underlying physical mechanism rendering the model development an extremely challenging task. For the models to be of practical use, they have to enable fast and accurate simulation that rules out the possibility of numerically solving a system of partial differential equations to arrive at a solution. In this chapter, we show how different modeling approaches can be used to simulate three emerging semiconductor devices namely, silicon- on- insulator four gate transistor(G4FET), perimeter gated single photon avalanche diode (PG-SPAD) and insulator-metal transistor (IMT) device with volatile memristance. All the models have been verified against experimental /TCAD data and implemented in commercial circuit simulator

    Appetite, appetite hormone and energy intake responses to two consecutive days of aerobic exercise in healthy young men

    Get PDF
    Single bouts of exercise do not cause compensatory changes in appetite, food intake or appetite regulatory hormones on the day that exercise is performed. It remains possible that such changes occur over an extended period or in response to a higher level of energy expenditure. This study sought to test this possibility by examining appetite, food intake and appetite regulatory hormones (acylated ghrelin, total peptide-YY, leptin and insulin) over two days, with acute bouts of exercise performed on each morning. Within a controlled laboratory setting, 15 healthy males completed two, 2-day long (09:00–16:00) experimental trials (exercise and control) in a randomised order. On the exercise trial participants performed 60 min of continuous moderate-high intensity treadmill running (day one: 70.1 ± 2.5% VO2peak, day two: 70.0 ± 3.2% VO2max (mean ± SD)) at the beginning of days one and two. Across each day appetite perceptions were assessed using visual analogue scales and appetite regulatory hormones were measured from venous blood samples. Ad libitum energy and macronutrient intakes were determined from meals provided two and six hours into each day and from a snack bag provided in-between trial days. Exercise elicited a high level of energy expenditure (total = 7566 ± 635 kJ across the two days) but did not produce compensatory changes in appetite or energy intake over two days (control: 29,217 ± 4006 kJ; exercise: 28,532 ± 3899 kJ, P > 0.050). Two-way repeated measures ANOVA did not reveal any main effects for acylated ghrelin or leptin (all P > 0.050). However a significant main effect of trial (P = 0.029) for PYY indicated higher concentrations on the exercise vs. control trial. These findings suggest that across a two day period, high volume exercise does not stimulate compensatory appetite regulatory changes

    Beyond Disenchantment: Toward a Sociology of Wonder

    Get PDF
    Focusing on disenchantment, sociology undertheorizes wonder. Our analysis of 30 interviews is the first sociological study of Americans’ wonder experiences. Contrary to Weber’s theorization of disenchantment, this study shows people experience wonder that is transformative and try to cultivate states of mind open to wonder experiences. Our study shows wonder follows from particularity, difference, and encounters with the mysterious; wonder connects people to expansive concerns; people experience acute self-awareness during wonder encounters; and people seek wonder experiences. Wonder communities influence wonder experiences, but stages of wonder experiences are similar outside communities

    Genomic Damage in Endstage Renal Disease—Contribution of Uremic Toxins

    Get PDF
    Patients with end-stage renal disease (ESRD), whether on conservative, peritoneal or hemodialysis therapy, have elevated genomic damage in peripheral blood lymphocytes and an increased cancer incidence, especially of the kidney. The damage is possibly due to accumulation of uremic toxins like advanced glycation endproducts or homocysteine. However, other endogenous substances with genotoxic properties, which are increased in ESRD, could be involved, such as the blood pressure regulating hormones angiotensin II and aldosterone or the inflammatory cytokine TNF-α. This review provides an overview of genomic damage observed in ESRD patients, focuses on possible underlying causes and shows modulations of the damage by modern dialysis strategies and vitamin supplementation
    corecore