168 research outputs found
Multiaxial Kitagawa analysis of A356-T6
Experimental Kitagawa analysis has been performed on A356-T6 containing
natural and artificial defects. Results are obtained with a load ratio of R =
-1 for three different loadings: tension, torsion and combined tension-torsion.
The critical defect size determined is 400 \pm 100 \mum in A356-T6 under
multiaxial loading. Below this value, the microstructure governs the endurance
limit mainly through Secondary Dendrite Arm Spacing (SDAS). Four theoretical
approaches are used to simulate the endurance limit characterized by a Kitagawa
relationship are compared: Murakami relationships [Y Murakami, Metal Fatigue:
Effects of Small Defects and Nonmetallic Inclusions, Elsevier, 2002.],
defect-crack equivalency via Linear Elastic Fracture Mechanics (LEFM), the
Critical Distance Method (CDM) proposed by Susmel and Taylor [L. Susmel, D.
Taylor. Eng. Fract. Mech. 75 (2008) 15.] and the gradient approach proposed by
Nadot [Y. Nadot, T. ~Billaudeau. Eng. Fract. Mech. 73 (2006) 1.]. It is shown
that the CDM and gradient methods are accurate; however fatigue data for three
loading conditions is necessary to allow accurate identification of an
endurance limit.Comment: 27 pages, 11 figure
Discrimination, labour markets and the Labour Market Prospects of Older Workers: What Can a Legal Case Teach us?
As governments become increasingly concerned about the fiscal implications of the ageing population, labour market policies have sought to encourage mature workers to remain in the labour force. The âhuman capitalâ discourses motivating these policies rest on the assumption that older workers armed with motivation and vocational skills will be able to return to fulfilling work. This paper uses the post-redundancy recruitment experiences of former Ansett Airlines
flight attendants to develop a critique of these expectations. It suggests that policies to increase
older workersâ labour market participation will not succeed while persistent socially constructed age- and gender- typing shape labour demand. The conclusion argues for policies sensitive to the institutional structures that shape employer preferences, the competitive rationality of
discriminatory practices, and the irresolvable tension between workersâ human rights and employersâ property rights
Regional Assessment of Soil Change in the Southwest Pacific
The Southwest Pacific region includes the 22 island nations of the Pacific1, New Zealand and Australia (Figure 15.1). The landscapes of the region are very diverse ranging from a large continental land mass through to tens of thousands of small islands across the enormous expanse of the southwest Pacific Ocean. There are extensive ancient flat lands through to some of the youngest and most tectonically active landscapes on the planet. Temperature and rainfall ranges are large because of the breadth of latitudes and elevations. As a consequence, the soils of the region are also diverse. The strongly weathered soils in humid tropical areas and the vast expanses of old soils across the Australian continent are particularly susceptible to disturbance and this is where some of the more intractable problems of soil management occur today
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality
Widespread tree mortality associated with drought 92 has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality
Widespread tree mortality associated with drought 92 has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function
- âŠ