3,323 research outputs found
Likelihood Analysis of Cosmic Shear on Simulated and VIRMOS-DESCART Data
We present a maximum likelihood analysis of cosmological parameters from
measurements of the aperture mass up to 35 arcmin, using simulated and real
cosmic shear data. A four-dimensional parameter space is explored which
examines the mean density \Omega_M, the mass power spectrum normalization
\sigma_8, the shape parameter \Gamma and the redshift of the sources z_s.
Constraints on \Omega_M and \sigma_8 (resp. \Gamma and z_s) are then given by
marginalizing over \Gamma and z_s (resp. \Omega_M and \sigma_8). For a flat
LCDM cosmologies, using a photometric redshift prior for the sources and \Gamma
\in [0.1,0.4], we find \sigma_8=(0.57\pm0.04) \Omega_M^{(0.24\mp 0.18)
\Omega_M-0.49} at the 68% confidence level (the error budget includes
statistical noise, full cosmic variance and residual systematic). The estimate
of \Gamma, marginalized over \Omega_M \in [0.1,0.4], \sigma_8 \in [0.7,1.3] and
z_s constrained by photometric redshifts, gives \Gamma=0.25\pm 0.13 at 68%
confidence. Adopting h=0.7, a flat universe, \Gamma=0.2 and \Omega_m=0.3 we
find \sigma_8=0.98 \pm0.06 . Combined with CMB, our results suggest a non-zero
cosmological constant and provide tight constraints on \Omega_M and \sigma_8.
We finaly compare our results to the cluster abundance ones, and discuss the
possible discrepancy with the latest determinations of the cluster method. In
particular we point out the actual limitations of the mass power spectrum
prediction in the non-linear regime, and the importance for its improvement.Comment: 11 pages, submitted to A&
Steroid Therapy for Bacterial Meningitis
Routine dexamethasone therapy for bacterial meningitis in pediatric patients is controversial. Two experts debated this topic at the 1993 meeting of the Infectious Diseases Society of America. Both experts agreed that for management of Haemophilus influenzae meningitis, dexamethasone significantly reduced sensorineural hearing loss and probably reduced other long-term sequelae. Because relatively few patients with pneumococcal and meningococcal meningitis have been studied, no conclusions could be reached regarding the effectiveness of dexamethasone. Dr. Urs Schaad emphasized the impressive anti-inflammatory effects of dexamethasone in experimental pneumococcal meningitis and the lack of any adverse events when given to children for 2 or 4 days. He recommended routine use of dexamethasone in treating pediatric patients with bacterial meningitis. Dr. Sheldon Kaplan expressed concern regarding the effectiveness of steroids in treating pneumococcal meningitis, especially when penicillin-resistant and cephalosporin-resistant isolates are present, and he addressed the question of the long-term effects of administration of dexamethasone in children with viral meningitis. He advised against the routine use of dexamethasone for non-H. influenzae meningiti
Compressive Strength of 24S-T Aluminum-alloy Flat Panels with Longitudinal Formed Hat-section Stiffeners
Results are presented for a part of a test program on 24S-T aluminum alloy flat compression panels with longitudinal formed hat-section stiffeners. This part of the program is concerned with panels in which the thickness of the stiffener materials is 0.625 times the skin thickness. The results, presented in tabular and graphical form, show the effect of the relative dimensions of the panel on the buckling stress and the average stress at maximum load. Comparative envelope curves are presented for hat-stiffened and Z-stiffened panels having the same ratio of stiffener thickness to sheet thickness. These curves provide some indication of the relative structural efficiencies of the two types of panel
The VIRMOS deep imaging survey: I. overview and survey strategy
This paper presents the CFH12K-VIRMOS survey: a deep B, V, R and I imaging
survey in four fields totalling more than 17 deg^2, conducted with the 30x40
arcmin^2 field CFH-12K camera. The survey is intended to be a multi-purpose
survey used for a variety of science goals, including surveys of very high
redshift galaxies and weak lensing studies.
Four high galactic latitude fields, each 2x2 deg^2, have been selected along
the celestial equator: 0226-04, 1003+01, 1400+05, and 2217+00. The 16 deg^2 of
the "wide" survey are covered with exposure times of 2h, 1.5h, 1h, 1h, while
the 1.3x1 deg^2 area of the "deep" survey at the center of the 0226-04 field is
covered with exposure times of 7h, 4.5h, 3h, 3h, in B,V,R and I respectively.
The data is pipeline processed at the Terapix facility at the Institut
d'Astrophysique de Paris to produce large mosaic images. The catalogs produced
contain the positions, shape, total and aperture magnitudes for the 2.175
million objects. The depth measured (3sigma in a 3 arc-second aperture) is
I_{AB}=24.8 in the ``Wide'' areas, and I_{AB}=25.3 in the deep area. Careful
quality control has been applied on the data as described in joint papers.
These catalogs are used to select targets for the VIRMOS-VLT Deep Survey, a
large spectroscopic survey of the distant universe (Le F\`evre et al., 2003).
First results from the CFH12K-VIRMOS survey have been published on weak lensing
(e.g. van Waerbeke & Mellier 2003).
Catalogs and images are available through the VIRMOS database environment
under Oracle ({\tt http://www.oamp.fr/virmos}). They will be open for general
use on July 1st, 2003.Comment: 17 pages including 9 figures, submitted to A&
Modeling atmospheric effects of the September 1859 Solar Flare
We have modeled atmospheric effects, especially ozone depletion, due to a
solar proton event which probably accompanied the extreme magnetic storm of 1-2
September 1859. We use an inferred proton fluence for this event as estimated
from nitrate levels in Greenland ice cores. We present results showing
production of odd nitrogen compounds and their impact on ozone. We also compute
rainout of nitrate in our model and compare to values from ice core data.Comment: Revised version including improved figures; Accepted for publication
in Geophys. Res. Lett, chosen to be highlighted by AG
The VIPERS Multi-Lambda Survey. II. Diving with massive galaxies in 22 square degrees since z = 1.5
We investigate the evolution of the galaxy stellar mass function (SMF) and
stellar mass density from redshift z=0.2 to z=1.5 of a <22-selected
sample with highly reliable photometric redshifts and over an unprecedentedly
large area. Our study is based on NIR observations carried out with WIRCam at
CFHT over the footprint of the VIPERS spectroscopic survey and benefits from
the high quality optical photometry from the CFHTLS and UV observations with
the GALEX satellite. The accuracy of our photometric redshifts is <
0.03 and 0.05 for the bright (22.5) samples,
respectively. The SMF is measured with ~760,000 galaxies down to =22 and
over an effective area of ~22.4 deg, the latter of which drastically
reduces the statistical uncertainties (i.e. Poissonian error & cosmic
variance). We point out the importance of a careful control of the photometric
calibration, whose impact becomes quickly dominant when statistical
uncertainties are reduced, which will be a major issue for future generation of
cosmological surveys with, e.g. EUCLID or LSST. By exploring the rest-frame
(NUV-r) vs (r-) color-color diagram separating star-forming and quiescent
galaxies, (1) we find that the density of very massive log() >
11.5 galaxies is largely dominated by quiescent galaxies and increases by a
factor 2 from z~1 to z~0.2, which allows for additional mass assembly via dry
mergers, (2) we confirm a scenario where star formation activity is impeded
above a stellar mass log() = 10.640.01, a value that
is found to be very stable at 0.2 < z < 1.5, (3) we discuss the existence of a
main quenching channel that is followed by massive star-forming galaxies, and
finally (4) we characterise another quenching mechanism required to explain the
clear excess of low-mass quiescent galaxies observed at low redshift.Comment: 22 pages, 20 figures. Accepted for publication in A&A. Version to be
publishe
Clustering properties of a type-selected volume-limited sample of galaxies in the CFHTLS
(abridged) We present an investigation of the clustering of i'AB<24.5
galaxies in the redshift interval 0.2<z<1.2. Using 100,000 precise photometric
redshifts in the four ultra-deep fields of the Canada-France Legacy Survey, we
construct a set of volume-limited galaxy catalogues. We study the dependence of
the amplitude and slope of the galaxy correlation function on absolute B-band
rest-frame luminosity, redshift and best-fitting spectral type. We find: 1. The
comoving correlation length for all galaxies decreases steadily from z~0.3 to
z~1. 2. At all redshifts and luminosities, galaxies with redder rest-frame
colours have clustering amplitudes between two and three times higher than
bluer ones. 3. For bright red and blue galaxies, the clustering amplitude is
invariant with redshift. 4. At z~0.5, less luminous galaxies have higher
clustering amplitudes of around 6 h-1 Mpc. 5. The relative bias between
galaxies with red and blue rest-frame colours increases gradually towards
fainter absolute magnitudes. One of the principal implications of these results
is that although the full galaxy population traces the underlying dark matter
distribution quite well (and is therefore quite weakly biased), redder, older
galaxies have clustering lengths which are almost invariant with redshift, and
by z~1 are quite strongly biased.Comment: 16 pages, 18 figures, accepted for publication in Astronomy and
Astrophysic
Dark energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5
We combine measurements of weak gravitational lensing from the CFHTLS-Wide
survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain
joint constraints on cosmological parameters, in particular, the dark energy
equation of state parameter w. We assess the influence of systematics in the
data on the results and look for possible correlations with cosmological
parameters.
We implement an MCMC algorithm to sample the parameter space of a flat CDM
model with a dark-energy component of constant w. Systematics in the data are
parametrised and included in the analysis. We determine the influence of
photometric calibration of SNIa data on cosmological results by calculating the
response of the distance modulus to photometric zero-point variations. The weak
lensing data set is tested for anomalous field-to-field variations and a
systematic shape measurement bias for high-z galaxies.
Ignoring photometric uncertainties for SNLS biases cosmological parameters by
at most 20% of the statistical errors, using supernovae only; the parameter
uncertainties are underestimated by 10%. The weak lensing field-to-field
variance pointings is 5%-15% higher than that predicted from N-body
simulations. We find no bias of the lensing signal at high redshift, within the
framework of a simple model. Assuming a systematic underestimation of the
lensing signal at high redshift, the normalisation sigma_8 increases by up to
8%. Combining all three probes we obtain -0.10<1+w<0.06 at 68% confidence
(-0.18<1+w<0.12 at 95%), including systematic errors. Systematics in the data
increase the error bars by up to 35%; the best-fit values change by less than
0.15sigma. [Abridged]Comment: 14 pages, 10 figures. Revised version, matches the one to be
published in A&A. Modifications have been made corresponding to the referee's
suggestions, including reordering of some section
- …