46 research outputs found

    Altered mitochondrial function and genome frequency post exposure to γ-radiation and bystander factors

    Get PDF
    PURPOSE: To further evaluate irregular mitochondrial function and mitochondrial genome damage induced by direct γ-irradiation and bystander factors in human keratinocyte (HPV-G) epithelial cells and hamster ovarian fibroblast (CHO-K1) cells. This is as a follow-up to our recent reports of γ-irradiation-induced loss of mitochondrial function and mitochondrial DNA (mtDNA) damage

    A national level assessment of metal contamination in bats

    Get PDF
    Abstract Many populations of bat species across the globe are declining, with chemical contamination one of many potential stressors implicated in these demographic changes. Metals still contaminate a wide range of habitats, but the risks to bats remain poorly understood. This study is the first to present a national scale assessment of toxic metal (Cd, Pb) and essential trace metal (Cu, Zn) concentrations in bats. Metal concentrations in tissues (kidneys, liver, stomach -stomach content, bones and fur) were measured in 193 Pipistrellus sp. in England and Wales using ICP-MS, and compared to critical toxic concentrations for small mammals. The concentrations of metals determined in bat tissues were generally lower than those reported elsewhere. Strong positive associations were found between concentrations in tissues for a given metal (liver and kidneys for Cd, Cu and Pb; stomach and fur and fur and bones for Pb), suggesting recent as well as long term exposure to these contaminants. In addition, positive correlations between concentrations of different metals in the same tissues (Cd and Zn, Cu and Zn, Cd and Pb, Pb and Zn) suggest a co-exposure of metals to bats. Approximately 21% of the bats sampled contained residues of at least one metal at concentrations high enough to elicit toxic effects (associated with kidney damage), or to be above the upper level measured in other mammal species. Pb was found to pose the greatest risk (with 7–11% of the bats containing concentrations of toxicological concern), followed by Cu (4–9%), Zn (0.5–5.2%) and Cd (0%). Our data suggest that leaching of metals into our storage matrix, formaldehyde, may have occurred, especially for Cu. The overall findings suggest that metal contamination is an environmental stressor affecting bat populations, and that further research is needed into the direct links between metal contamination and bat population declines worldwide

    Fur : A non-invasive approach to monitor metal exposure in bats

    Get PDF
    This paper presents a novel assessment of the use of fur as a non-invasive proxy to biomonitor metal contamination in insectivorous bats. Concentrations of metals (cadmium, copper, lead and zinc) were measured using ICP-MS in tissues (kidneys, liver, stomach and stomach content, bones and fur) obtained from 193 Pipistrellus pipistrellus/pygmaeus bats. The bats were collected across a gradient of metal pollution in England and Wales. The utility of small samples of fur as an indicator of metal exposure from the environment was demonstrated with strong relationships obtained between the concentrations of non-essential metals in fur with concentrations in stomach content, kidneys, liver and bones. Stronger relationships were observed for non-essential metals than for essential metals. Fur analyses might therefore be a useful non-invasive proxy for understanding recent, as well as long term and chronic, metal exposure of live animals. The use of fur may provide valuable information on the level of endogenous metal exposure and contamination of bat populations and communities

    Predicting tree distributions in an East African biodiversity hotspot : model selection, data bias and envelope uncertainty

    Get PDF
    The Eastern Arc Mountains (EAMs) of Tanzania and Kenya support some of the most ancient tropical rainforest on Earth. The forests are a global priority for biodiversity conservation and provide vital resources to the Tanzanian population. Here, we make a first attempt to predict the spatial distribution of 40 EAM tree species, using generalised additive models, plot data and environmental predictor maps at sub 1 km resolution. The results of three modelling experiments are presented, investigating predictions obtained by (1) two different procedures for the stepwise selection of predictors, (2) down-weighting absence data, and (3) incorporating an autocovariate term to describe fine-scale spatial aggregation. In response to recent concerns regarding the extrapolation of model predictions beyond the restricted environmental range of training data, we also demonstrate a novel graphical tool for quantifying envelope uncertainty in restricted range niche-based models (envelope uncertainty maps). We find that even for species with very few documented occurrences useful estimates of distribution can be achieved. Initiating selection with a null model is found to be useful for explanatory purposes, while beginning with a full predictor set can over-fit the data. We show that a simple multimodel average of these two best-model predictions yields a superior compromise between generality and precision (parsimony). Down-weighting absences shifts the balance of errors in favour of higher sensitivity, reducing the number of serious mistakes (i.e., falsely predicted absences); however, response functions are more complex, exacerbating uncertainty in larger models. Spatial autocovariates help describe fine-scale patterns of occurrence and significantly improve explained deviance, though if important environmental constraints are omitted then model stability and explanatory power can be compromised. We conclude that the best modelling practice is contingent both on the intentions of the analyst (explanation or prediction) and on the quality of distribution data; generalised additive models have potential to provide valuable information for conservation in the EAMs, but methods must be carefully considered, particularly if occurrence data are scarce. Full results and details of all species models are supplied in an online Appendix. (C) 2008 Elsevier B.V. All rights reserved

    Biomechanical Considerations in the Design of High-Flexion Total Knee Replacements

    Get PDF
    Typically, joint arthroplasty is performed to relieve pain and improve functionality in a diseased or damaged joint. Total knee arthroplasty (TKA) involves replacing the entire knee joint, both femoral and tibial surfaces, with anatomically shaped artificial components in the hope of regaining normal joint function and permitting a full range of knee flexion. In spite of the design of the prosthesis itself, the degree of flexion attainable following TKA depends on a variety of factors, such as the joint’s preoperative condition/flexion, muscle strength, and surgical technique. High-flexion knee prostheses have been developed to accommodate movements that require greater flexion than typically achievable with conventional TKA; such high flexion is especially prevalent in Asian cultures. Recently, computational techniques have been widely used for evaluating the functionality of knee prostheses and for improving biomechanical performance. To offer a better understanding of the development and evaluation techniques currently available, this paper aims to review some of the latest trends in the simulation of high-flexion knee prostheses

    Conservation set-asides improve carbon storage and support associated plant diversity in certified sustainable oil palm plantations

    Get PDF
    Maintaining forest conservation set-asides is a key criterion of sustainability certification of many crops that drive tropical deforestation, but their value for carbon storage and associated biodiversity is unclear. We conducted vegetation measurements to examine the benefits of set-asides for aboveground carbon stocks (AGC) in certified oil palm plantations on Borneo, and whether their AGC is positively associated with plant diversity. The mean estimated AGC of live trees and palms ≥10 cm diameter in set-asides in certified oil palm plantations (52.8 Mg ha−1) was >1.5-times that of oil palm (30.3 Mg ha−1), with some plots supporting similar AGC to primary forest. For lowland Borneo, we estimate that the average AGC of oil palm plantations with 10% coverage of set-asides is up to 20% greater than the average AGC of oil palm plantations without set-asides, newly demonstrating carbon storage as a benefit of conservation set-asides. We found positive relationships between AGC and plant diversity, highlighting the carbon–biodiversity co-benefits of set-asides. However, set-asides had a lower density of tree seedlings than continuous primary forest, indicating potential suppression of future tree regeneration and AGC. Our findings support the application of zero-deforestation during agricultural development, to conserve areas of remaining forest with high AGC and high biodiversity. We recommend management practices that boost regeneration in existing set-asides (e.g. enrichment planting), which would be most effective in larger set-asides, and could substantially increase the AGC of agricultural landscapes without removing land from production, and help conserve forest-dependent biodiversity

    Predicting Impacts of Climate Change on Fasciola hepatica Risk

    Get PDF
    Fasciola hepatica (liver fluke) is a physically and economically devastating parasitic trematode whose rise in recent years has been attributed to climate change. Climate has an impact on the free-living stages of the parasite and its intermediate host Lymnaea truncatula, with the interactions between rainfall and temperature having the greatest influence on transmission efficacy. There have been a number of short term climate driven forecasts developed to predict the following season's infection risk, with the Ollerenshaw index being the most widely used. Through the synthesis of a modified Ollerenshaw index with the UKCP09 fine scale climate projection data we have developed long term seasonal risk forecasts up to 2070 at a 25 km square resolution. Additionally UKCIP gridded datasets at 5 km square resolution from 1970-2006 were used to highlight the climate-driven increase to date. The maps show unprecedented levels of future fasciolosis risk in parts of the UK, with risk of serious epidemics in Wales by 2050. The seasonal risk maps demonstrate the possible change in the timing of disease outbreaks due to increased risk from overwintering larvae. Despite an overall long term increase in all regions of the UK, spatio-temporal variation in risk levels is expected. Infection risk will reduce in some areas and fluctuate greatly in others with a predicted decrease in summer infection for parts of the UK due to restricted water availability. This forecast is the first approximation of the potential impacts of climate change on fasciolosis risk in the UK. It can be used as a basis for indicating where active disease surveillance should be targeted and where the development of improved mitigation or adaptation measures is likely to bring the greatest benefits

    Mapping regional risks from climate change for rainfed rice cultivation in India

    Get PDF
    Global warming is predicted to increase in the future, with detrimental consequences for rainfed crops that are dependent on natural rainfall (i.e. non-irrigated). Given that many crops grown under rainfed conditions support the livelihoods of low-income farmers, it is important to highlight the vulnerability of rainfed areas to climate change in order to anticipate potential risks to food security. In this paper, we focus on India, where ~ 50% of rice is grown under rainfed conditions, and we employ statistical models (climate envelope models (CEMs) and boosted regression trees (BRTs)) to map changes in climate suitability for rainfed rice cultivation at a regional level (~ 18 × 18 km cell resolution) under projected future (2050) climate change (IPCC RCPs 2.6 and 8.5, using three GCMs: BCC-CSM1.1, MIROC-ESM-CHEM, and HadGEM2-ES). We quantify the occurrence of rice (whether or not rainfed rice is commonly grown, using CEMs) and rice extent (area under cultivation, using BRTs) during the summer monsoon in relation to four climate variables that affect rice growth and yield namely ratio of precipitation to evapotranspiration (PER), maximum and minimum temperatures (Tmax and Tmin), and total rainfall during harvesting. Our models described the occurrence and extent of rice very well (CEMs for occurrence, ensemble AUC = 0.92; BRTs for extent, Pearson's r = 0.87). PER was the most important predictor of rainfed rice occurrence, and it was positively related to rainfed rice area, but all four climate variables were important for determining the extent of rice cultivation. Our models project that 15%–40% of current rainfed rice growing areas will be at risk (i.e. decline in climate suitability or become completely unsuitable). However, our models project considerable variation across India in the impact of future climate change: eastern and northern India are the locations most at risk, but parts of central and western India may benefit from increased precipitation. Hence our CEM and BRT models agree on the locations most at risk, but there is less consensus about the degree of risk at these locations. Our results help to identify locations where livelihoods of low-income farmers and regional food security may be threatened in the next few decades by climate changes. The use of more drought-resilient rice varieties and better irrigation infrastructure in these regions may help to reduce these impacts and reduce the vulnerability of farmers dependent on rainfed cropping

    A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans

    Get PDF
    Background The wild relatives of crops represent a major source of valuable traits for crop improvement. These resources are threatened by habitat destruction, land use changes, and other factors, requiring their urgent collection and long-term availability for research and breeding from ex situ collections. We propose a method to identify gaps in ex situ collections (i.e. gap analysis) of crop wild relatives as a means to guide efficient and effective collecting activities. Methodology/Principal Findings The methodology prioritizes among taxa based on a combination of sampling, geographic, and environmental gaps. We apply the gap analysis methodology to wild taxa of the Phaseolus genepool. Of 85 taxa, 48 (56.5%) are assigned high priority for collecting due to lack of, or under-representation, in genebanks, 17 taxa are given medium priority for collecting, 15 low priority, and 5 species are assessed as adequately represented in ex situ collections. Gap “hotspots”, representing priority target areas for collecting, are concentrated in central Mexico, although the narrow endemic nature of a suite of priority species adds a number of specific additional regions to spatial collecting priorities. Conclusions/Significance Results of the gap analysis method mostly align very well with expert opinion of gaps in ex situ collections, with only a few exceptions. A more detailed prioritization of taxa and geographic areas for collection can be achieved by including in the analysis predictive threat factors, such as climate change or habitat destruction, or by adding additional prioritization filters, such as the degree of relatedness to cultivated species (i.e. ease of use in crop breeding). Furthermore, results for multiple crop genepools may be overlaid, which would allow a global analysis of gaps in ex situ collections of the world's plant genetic resource
    corecore