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Typically, joint arthroplasty is performed to relieve pain and improve functionality in a diseased or damaged joint. Total knee
arthroplasty (TKA) involves replacing the entire knee joint, both femoral and tibial surfaces, with anatomically shaped artificial
components in the hope of regaining normal joint function and permitting a full range of knee flexion. In spite of the design of
the prosthesis itself, the degree of flexion attainable following TKA depends on a variety of factors, such as the joint’s preoperative
condition/flexion, muscle strength, and surgical technique. High-flexion knee prostheses have been developed to accommodate
movements that require greater flexion than typically achievable with conventional TKA; such high flexion is especially prevalent
in Asian cultures. Recently, computational techniques have been widely used for evaluating the functionality of knee prostheses and
for improving biomechanical performance. To offer a better understanding of the development and evaluation techniques currently
available, this paper aims to review some of the latest trends in the simulation of high-flexion knee prostheses.

1. Introduction

Many daily activities require considerable knee flexion, level
walking >60∘, ascending stairs >80∘, sitting >90∘, and getting
out of a bath >130∘ [1, 2]. High-flexion often refers to
movements that require over 120∘ of knee flexion, which
are particularly common in Asian cultures [3–6], squat-
ting, sitting cross-legged, kneeling, and prayer. High-flexion
(HF) knee prostheses have been developed for this purpose
and have been proven to accommodate such movements.
However, whether such HF prostheses are clinically more
effective than conventional knee replacements is debatable,
withmost studies showing either no significant improvement
or mild improvements over conventional TKA [7–10]. Even
for studies that do report significantly greater flexion with
HF designs, bias in patient selection, experimental errors, or

shortcomings in measurement methods may greatly influ-
ence the results [3–5].Therefore, whetherHF knee prostheses
are practically useful to patients requires further research
using clearly defined measurement and testing methods to
make studies comparable.

The choice to use a high-flexion knee is ultimately left to
the surgeon, with patient consent. As such, this report will
compile published data regarding the biomechanical aspects
of HF total knee replacement (TKR) with special focus
on posterior cruciate ligament retaining knees (cruciate-
retaining (CR)) and posterior cruciate ligament sacrificing
designs (posterior-stabilized (PS)). Meta-analyses comparing
CR and PS knees have generally shown no favourable design
in terms of longevity, range of motion, and pain. A recent
Cochrane Database review [11] of 17 studies involving 1810
patients concluded that there is no solid clinical reason for
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choosing to either retain or remove the posterior cruciate
ligament (PCL) but also noted that arthroplasty where the
PCL is retained is more difficult to perform.

2. Modelling High Knee Flexion

This review details two computational methods for studying
the biomechanics of knee prostheses. One method uses
multibody dynamics software, namely, MSC Adams (MSC
Software Corporation, Santa Ana, CA), to study the dynamic
behaviour of the knee joint. Another technique is to use
finite element analysis (FEA) to study the internalmechanical
condition of the joint: stress, strain, and so forth. The FEA
research detailed below typically used ABAQUS (Dassault
Systèmes, Vélizy-Villacoublay, France) accompanied by some
preprocessing and meshing software.

The major drawback in the computational simulation
of joints lies in the simplifications that must be made
within each model. Some of these assumptions are purposely
designed into the model in consideration of cost, computing
power, time, processing, and so forth, but it must also be
noted that such simulations have not advanced far enough to
realistically imitate all of the components and tissues within
the joint. Inherent simplifications in the modelling process,
such as inaccurate representations of soft tissues, need to
be taken into consideration. The validity of a model may
be determined by comparing the results against in/ex vivo
studies of a representative human joint or by comparing the
models against previously validated simulations. Each of the
models detailed below has been validated in this manner.

3. Achieving High Knee Flexion

High knee flexion (>120∘) requires significant translation of
the femoral condyles on the tibial plateau. Inadequate femoral
rollback and tibial rotation are common complications with
current high-flexion prostheses during such high flexion [12–
14]. To overcome these problems, Liu et al. developed a
nonsymmetric CR tibial insert with a lateral condyle that
was lowered and convex in shape, reportedly replicating the
shape of a healthy knee [15, 16]. The convex insert allows
the femoral condyle to sublux off the back of the tibial
plateau and reduces the incidence of impingement during
high flexion. Direct impingement between the posterior tibial
insert and femur has been suggested as a factor limiting high
flexion in conventional prostheses [17]. The concave radius
of the medial condyle was also reduced to offer a tighter
tibiofemoral contact. It was found that shaping the condyles
of the CR TKR in this way increased femoral rollback and
tibial internal rotation over a traditional symmetric TKR.
However, it should be noted that beyond 100∘ knee flexion
both the symmetric and nonsymmetric TKR models were
reversed into external tibial rotation, but the intact (healthy)
knee model continued to show internal rotation of the
tibia [15]. So, while shaping the tibial insert similar to an
intact knee does noticeably improve knee kinematics, it still
cannot claim to accurately replicate the motion patterns of
a healthy knee. A follow-up study modified the shape of

both the medial and lateral condyles of the CR femoral
component and included the aforementioned convex lateral
tibial compartment (Figure 1) [18]. Rollback and rotation
were compared to a symmetric TKR model. It was found
that, by increasing the height of the medial femoral condyle
over the lateral condyle, the model could demonstrate more
natural knee motion from extension through to deep flexion,
although this follow-up study did not directly compare the
models against an intact knee. A general conclusion can be
drawn that, bymimicking the convex shape of the lateral tibial
insert and increasing the height of themedial femoral condyle
over the lateral side, femoral rollback and tibial rotation can
be improved.

Retrieval studies have consistently shown incongru-
ent articular surfaces to be associated with a greater risk
of polyethylene wear [19–21]. Increasing the conformity
between the femoral and tibial surfaces and closely replicating
the shape of the anatomical knee should help in reducing
such wear. However, thinning the lateral compartment puts
the insert at risk of fracture, and heightening the medial
compartment may disrupt the joint line. Lin et al. [22]
demonstrated that a 10mm elevation of the joint line in
a PS knee, by increasing the thickness of the tibial insert,
significantly tensioned the collateral ligaments and increased
joint stiffness. While stiffer ligaments may offer a more
stable joint, such excessive stiffness as seen in Lin et al.’s
study would place the joint under greater internal loading
and possibly fracture the tibial insert. Further research is
needed on this point to determine the optimal thickness
of the insert and height difference between the medial and
lateral compartments so as to offer the greatest biomechanical
advantage without increasing the risk of component wear.

Additionally, mobile bearing tibial inserts have been
developed to offer dual articulation in the knee, theoretically
permitting a greater range of motion and reducing contact
stress, and in turn reducing wear [19, 23]. In a series of
case studies on retrieved implants, Huang et al. found such
mobile bearings to produce smaller particulate debris and a
higher percentage of granular debris in comparison to their
fixed bearing counterparts, placing the knee at greater risk of
osteolysis [24–26], but it was also noted that mobile bearing
designs allow for earlier recognition of component wear [27].

It has been reported that at least 19% of patients receiving
posterior stabilized (PS) knees suffer abnormal tibiofemoral
axial rotation [7]. While the degree of tibial rotation is
highly variable between different TKA studies, it is generally
conceded that axial rotation followingTKAcannot accurately
replicate healthy knee motion. Li et al. [14] demonstrated
the importance of the cam-spine (post-cam) mechanism in
guiding tibiofemoral motion and that knee motion after
engagement between the post and camwas quite independent
of the applied muscle loads. However, in PS knees, the
interaction between the cam and spine as the knee is flexed,
particularly at high flexion angles, will heavily influence both
the motion of the knee and the longevity of the implant
itself; a greater contact area will increase stability and reduce
localized contact stress on the spine. Lin et al. evaluated two
different post-cam contact shapes in PS knees, with flat-on-
flat or curve-on-curve surfaces (Figure 2) [28]. Tibial rotation
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Figure 1: Femoral and tibial componentsmodified on bothmedial and lateral sides [18]. (a) Anatomic-like knee, (b) knee with condyle height
difference of 2.7mm, and (c) knee with condyle height difference of 4.7mm.

(A) Initial engagement

(B) Imaginary overlap

(a)

(A) Initial engagement

(B) Imaginary overlap

(b)

Figure 2: Initial engagement and the imaginary overlap between the tibial post and femoral cam for flat-on-flat (a) and curve-on-curve (b)
models [28].

was shown to be comparable in both designs prior to post-
cam engagement; an obvious deviation in plots was evident at
around 45∘ knee flexion. The curve-on-curve design showed
greater rotation beyond this point up to full flexion at 135∘,
although both designs followed a similar motion pattern.
Figure 2 shows the overlap between the post and cam for both
models during knee flexion.The greater medial impingement
is obvious in the flat-on-flat model, which would increase
edge loading on the post and also add resistance to tibial
rotation.

In a related study, Huang et al. analysed the stress on
the tibial post for flat-on-flat and curve-on-curve designs up
to a knee flexion angle of 150∘ [29]. Two conditions were
simulated, one where there was no rotation between the tibia
and femur and the other with 10∘ internal rotation of the
tibial insert relative to the femoral component, which is more
representative of anatomical alignment. Wear of the tibial
post is inevitable as the cam and spine engage and rub against
each other during knee flexion, and this can often lead to
fracture of the post. As in Lin et al.’s study [28], a flat-on-flat
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Figure 3: Contact stress (MPa) on the anterior face of tibial post at 10∘ hyperextension and 5∘ axial rotation for (a) flat-on-flat and (b) curve-
on-curve contact surfaces (modified from [30]).

design can be expected to experience greater edge loading
on the posterior face of the post as the tibia rotates out of
neutral alignmentwith the femur. For the 10∘ rotationmodels,
Huang et al. showed that curve-on-curve contact surfaces can
reduce the maximum contact stress on the posterior tibial
post by over 30% in comparison to flat-on-flat surfaces and
can increase the contact area by 8%. In a follow-up study,
Huang et al. examined the contact status on the anterior face
of the tibial post where contact with the femoral component
occurs when the knee is extended [30]. Knee prostheses were
modelled with 0∘, 2.5∘, and 5∘ of axial rotation and in 0∘, 5∘,
and 10∘ of hyperextension; intuitively, hyperextension of the
knee may further increase the stress on the anterior post.
By tilting the femoral component forward by 5∘, putting it
into hyperextension, and tilting the tibial insert posteriorly
by 5∘, Wang et al. were able to improve femoral rollback
in comparison to a knee with components inserted in a
neutral alignment [31]. However, while the medial condyle
showed comparable motion to a healthy knee up to 135∘ knee
flexion, rollback of the lateral condyle was greatly reduced.
Correspondingly, Huang et al. [30] showed that 10∘ of hyper-
extenion (with 5∘ axial rotation) could reduce anterior curve-
on-curve peak contact stress by 25% in comparison to flat-
on-flat surfaces and could increase the contact area by about
30% (Figure 3). Figure 3 details the location of the maximum
contact stress when the knee was hyperextended by 10∘;
significant edge loading is obvious in the flat-on-flat model.
Huang et al. also observed that the contact point shifted
downward as the degree of hyperextension was increased
from 0∘ to 5∘ to 10∘ and noted that the shorter moment arm
could reduce the tensile stress on the post. Putting the knee
into hyperextension may lower the contact point on the tibial
post and improve femoral rollback, which is important for

high flexion, but it also increases the stress on the anterior
face of the post in comparison to a knee in neutral alignment.

In a bid to further improve tibial rotation, Lin et al. [32]
modified a curve-on-curve surface to reduce the thickness
of the medial side of the curved femoral cam; the cam
gradually reduced in thickness from the lateral to medial
side. In comparison to a baseline curve-on-curve model, the
asymmetric cam design was shown to improve tibial rotation,
but medial femoral rollback was compromised. Even after
post-cam engagement, the medial condyle of the femur was
located anteriorly, which could lead to early impingement.

4. Conclusion

In conclusion, these studies promote the use of anatomically
shaped knee prostheses to achieve high knee flexion while
limiting component wear. A rounded and convex lateral
plateau and a shallower medial plateau on the tibial surface
promote femoral rollback and permit more natural knee
motion. Also, the post-cam contact surfaces should be
rounded on both the anterior and posterior faces to reduce
edge loading and produce a greater contact surface area
throughout flexion. As mentioned, an asymmetric curve-
on-curve cam shape may improve tibial rotation but at the
expense of femoral rollback.
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