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Abstract 

Purpose: To further evaluate irregular mitochondrial function and mitochondrial genome 

damage induced by direct γ irradiation and bystander factors in human keratinocyte (HPV-G) 

epithelial cells and hamster ovarian fibroblast (CHO-K1) cells. This is as a follow up to our 

recent reports of γ-irradiation induced loss of mitochondrial function and mitochondrial DNA 

(mtDNA) damage. 

Materials and Methods: Mitochondrial function was evaluated post direct radiation and 

irradiated cell conditioned medium (ICCM) by determining: activity of the individual 

complexes of oxidative phosphorylation (OxPhos); mtDNA-encoded protein synthesis; 

mitochondrial genome frequency and mtDNA damage.  

Results: Mitochondria show a loss of OxPhos enzyme function as early as 4 hours post 

treatment with recovery observed 12-96 hours in some but not all complexes demonstrating a 

non-uniform sensitivity to γ radiation. We also identified irregular mtDNA-directed protein 

synthesis. Long range Polymerase Chain Reaction (PCR) analysis identified mitochondrial 

genome damage and real time PCR identified increases in mitochondrial genome frequency. 

Conclusions: The study reaffirms the sensitive nature of mitochondria to both low-level direct 

radiation exposure and radiation-induced bystander factor mediated damage. Furthermore, we 

report for the first time, the loss of function in the enzymes of OxPhos post exposure to 

bystander factors and identify altered mtDNA-directed protein synthesis post both direct 

radiation and bystander factors. 
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Introduction 

The bystander effect may be observed when cells, not exposed to radiation, display radiation-

like damage, when in the vicinity of irradiated cells or exposed to medium from irradiated 

cells.  Previous studies have reported these bystander factors to induce chromosome 

aberrations (Lorimore et al. 2008), micronuclei induction (Prise et al. 1998), changes in gene 

expression (Azzam et al. 1998), sister chromatid exchanges (Nagasawa and Little 1992), 

apoptosis and reproductive death (Lyng et al. 2000), increases in ROS (Narayanan et al. 1999) 

and genomic instability in future generations of cells (Seymour and Mothersill 1997, Wright 

1998). At present the bystander factor has yet to be characterised, though it is considered to be 

a cellular stress response or damage signal resulting from a range of signal transduction 

pathways (Lyng et al. 2002, Lyng et al. 2006, Zhou et al. 2005, Zhou et al. 2008). 

Furthermore it is now evident that the mitochondria play a significant role in both mediating 

and regulating the bystander effect (Tartier et al. 2007, Chen et al. 2008, Zhou et al. 2008). 

Evidence has accumulated that at very low doses of radiation, any subsequent damage is 

predominantly as a result of the release of bystander factors and the direct effects at such low 

doses are negligible (Seymour and Mothersill 2000, Mothersill et al. 2004). There are three 

main approaches used to demonstrate bystander effects: (i) cells may be exposed to low 

fluences α-particles such that only a small fraction of cells are traversed by a radiation track 

(Nagasawa and Little 1992); (ii) a microbeam may be used to traverse a single cell or a 

specific region of a cell (Prise et al. 1998); (iii) Irradiated cell conditioned medium (ICCM) is 

transferred to unirradiated cells (Mothersill and Seymour 1997).  The latter method employing 

ICCM is employed in this study. 
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 The mitochondrial genome is the only other source of genetic material outside the 

nucleus and is a maternally inherited closed circular double stranded structure (Taanman, 

1999). Although the genome encompasses a minute fraction of the total genetic material in a 

cell (0.5-1%), any damage or alteration to it can still have serious implications for a cell’s 

viability and / or survival. Mitochondrial DNA (mtDNA) is made up of almost entirely of 

coding regions, it lacks a protective histone coat, undergoes limited proof reading and repair 

when copied and is in close proximity to a rich source of reactive oxygen species (ROS) via 

Oxidative Phosphorylation (OxPhos). All of these factors contribute to the 10-20 fold greater 

mutation rate observed in this genome compared to the nuclear genome (Gray 1999). Ninety 

percent of cellular oxygen is consumed in OxPhos (Karthikeyan and Resnick 2005), where 

electrons are passed from complex to complex and like any other biological system, this is 

never 100% efficient and electrons are periodically lost to the matrix. These electrons that 

leak may interact with molecular oxygen to form superoxide radicals (O2
·-
) which are 

converted into ROS. ROS has been linked to an increase in mitochondrial mass (Limoli et al. 

2003, Lee et al. 2005, Spodnik et al. 2002). Malakhova et al (2005) found a significant 

increase in mtDNA copy number in post mitotic brain and mitotically active spleen tissue of 

mice 24-72 hours post 3 Gy γ irradiation. ROS have also have been shown to have a role in 

perpetuating the bystander effect (Lyng et al. 2002, Iyer and Lehnert 2000). Wang et al 

(2007) reported a 2-3 fold increase in mitochondrial mass and 4-5 fold increase in mtDNA in 

the progeny of low-dose irradiated HepG2 cells. Kim et al (2006) showed that mitochondrial 

dysfunction had a role in maintaining oxidative stress. These authors demonstrated that this 

was not due to an increase in mitochondrial numbers or increases in mtDNA levels. Instead 

they found significant decreased levels of state 3 respiration, manganese superoxide 
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dismutase (MnSOD) activity, cytochrome c oxidase (Complex IV) activity and increases in 

H2O2 levels were observed. These authors concluded that alterations to the Electron Transport 

Chain (ETC), such as mutations or altered gene expression could inhibit oxygen uptake and 

an increase in ROS could inactivate MnSOD, all of which are contributing factors in oxidative 

stress.  

The mitochondrial genome is controlled by approximately 1500 genes in total with 

only 37 of these encoded by mtDNA. These include 22 transfer RNAs (tRNAs), 2 ribosomal 

RNAs (rRNAs) and 13 enzyme subunits that make up part of the OXPHOS chain. Complexes 

I, III, IV and V contain both nuclear DNA (nDNA) and mtDNA encoded sub-units, while 

only complex II is entirely encoded by nDNA and therefore mtDNA damage will manifest in 

this pathway. Indeed, alterations in the respiratory system and mtDNA appear to be a general 

feature in malignant cells (Carew and Huang 2002). Damage leads to OxPhos dysfunction, 

which gives rise to defects in mitochondrial ATP production and numerous disorders with the 

main tissues affected being those of higher energy demand such as skeletal muscle and the 

nervous system.  Simonnet et al (2003) reported that complex I activity and protein content 

was significantly reduced in contrast to other enzyme complexes in renal oncocytomas benign 

tumours and suggested that deficiency in complex I could be the contributor for the initiation 

of mitochondrial biogenesis. Complex I dysfunction is one of the main causes of 

mitochondrial disease and its deficiency can result in disorders such as Parkinson’s disease 

and Leigh’s syndrome (Almeida and Medina 1998, Visch et al. 2004, Palacino et al. 2004).  

Simmonet et al (2002) reported up to a 5 fold increase in the mitochondrial mass marker 

citrate synthase activity correlating with tumour aggressiveness in patients suffering from 

renal cancer. These results were in parallel with a 7 fold increase in complex IV activity, 
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while II, III and V were only slightly increased, suggesting that mitochondria increase to 

compensate for an overall decrease in ATP reduction through OxPhos. Although Savanger et 

al (2001) showed that oxygen consumption rates were defective despite increased 

mitochondrial accumulation in oncocytoma thyroid oxphilic tumours. Rossignol et al (2003) 

reported that glucocorticoid-treated mice suffering from a mitochondrial myopathy had an 

increase in mitochondrial mass and these authors suggested that this was a mechanism to 

compensate for an oxidative defect, facilitating maximum oxygen uptake and a higher yield of 

ATP within the cell.    

In the present study, HPV-G and CHO-K1 cells were examined to further determine 

the impact of direct irradiation and bystander factors on mitochondrial function, specifically 

the activity of OxPhos enzyme complexes, mtDNA-encoded polypeptide synthesis and 

mtDNA integrity. This study is a continuation of previous work by this group on 

mitochondrial damage induced by both direct irradiation and ICCM that included mtDNA 

mutations and a novel mtDNA deletion (Murphy et al. 2005) and altered mitochondrial mass 

and mitochondrial oxygen consumption (Nugent et al. 2007). 

 

Materials and Methods 

 

Cell Culture 

Two cell lines were employed in this study: a human keratinocyte epithelial cell line (HPV-G) 

derived from human neonatal foreskin transfected with the HPV 16 virus (Pirisi et al. 1998), 

supplied as a kind gift from Dr. J. Di Paolo (NIH, Bethesda, MD) and a spontaneously 

transformed Chinese Hamster ovarian cell line (CHO-K1), (European Collection of Cell 
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Cultures, Salisbury, UK) (Kao and Puck 1968). HPV-G cells were maintained in Dulbecco’s 

Modified Eagle Nutrient Mixture (DMEM)/ F12 (Sigma, Dorset, UK), supplemented with 10 

% foetal calf serum (FCS) (Gibco, Biocult Irvine, Scotland), 20 mM L-Glutamine (Gibco), 

1U/ml penicillin/ streptomycin (Gibco) and 1 µg/ ml hydrocortisone (Sigma).  CHO-K1 cell 

line were maintained in Ham’s Nutrient Mixture, F12 (Ham) (Sigma), supplemented with 12 

% foetal calf serum (Gibco), 1 U/ml penicillin/ streptomycin (Gibco), 20 mM L-glutamine 

(Gibco) and 25 mM  4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) buffer 

(Gibco). Both cell lines were maintained in an incubator at 37 
o
C, 5 % CO2 and 95 % 

humidity.  

 

Direct Irradiation  

Cells were grown to 70-80 % confluency in cell culture flasks. Cells were either sham 

irradiated or directly irradiated with doses of 5 mGy, 0.5 Gy or 5 Gy γ-radiation at room 

temperature using a Cobalt 60 teletherapy unit (St. Luke’s Hospital, Rathgar, Dublin). The 

dose rate was either 1.8 Gy/ min at a source to flask distance of 80 cm (for 0.5 and 5 Gy) or 

0.4 Gy/ min at a source to flask distance of 170 cm (for 5 mGy). The flasks were returned to 

the incubator immediately after irradiation and maintained in normal cell-culture conditions 

for analysis 4-96 hours later.  
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Exposure to Bystander Factors 

Donor T-25 flasks (NUNC, Roskilde, Denmark) containing 5 x 10
5 

cells per 5 ml medium 

were irradiated or sham irradiated at room temperature using a Cobalt 60 teletherapy unit (St. 

Luke’s Hospital, Rathgar, Dublin) 1 hour post addition of fresh medium to each flask. The 

dose rate was either 1.8 Gy/ min at a source to flask distance of 80cm (for 0.5 and 5Gy) or 

0.4Gy/ min at a source to flask distance of 170 cm (for 5 mGy). Flasks were exposed to either 

0 Gy (sham), 5 mGy, 0.5 Gy or 5 Gy. Medium was removed from each flask 1 hour post 

irradiation and passed through a 0.22 µm sterile filter (Anachem, Luton, UK) to eliminate 

cells or debris from the ICCM. ICCM was transferred to un-irradiated cells grown to 70-80 % 

confluency in T-75 flasks (NUNC) for enzyme kinetic assays and mtDNA molecular analysis 

or in six wells plates for mitochondrial protein synthesis analysis. These ICCM recipient 

flasks were returned to the incubator and maintained in normal cell-culture conditions for 

analysis 4-96 hours later.   

 

DNA isolation, quantification, separation and visualization 

Total DNA was isolated using the Total DNA GenElute kit (Sigma) according manufacturer’s 

instructions. DNA purity and concentration was confirmed by spectrophotometric analysis at 

260 and 280 nm. Polymerase Chain Reaction (PCR) products were electrophoresed on a 0.8-

1.2 % agarose gel supplemented with Ethidium Bromide. Bands were visualised, 

photographed, and band densities were calculated using a GeneGenius DNA imager and 

associated software (Syngene, Cambridge, UK). 



9 

 

 

Long Range PCR Amplification 

20 µl PCR reactions were prepared containing 1x Readymix Extensor PCR Mastermix 

(ABgene, Epsom, UK) and 0.1 µM of GGCACCCCTCTGACATCC (forward) and 

TAGGTTTGAGGGGGAATGCT (reverse) primers along with 5 ng template DNA. 

Reactions were put through an initial denaturing step, of 94 
o
C for 30 seconds followed by 15 

cycles of 94 
o
C for 10 seconds; 56 

o
C for 2 minutes and 68

  o
C for 8 minutes. A further 20 

cycles at 94 
o
C for 10 seconds; 56 

o
C for 2 minutes and 68 

 o
C for 8 minutes (+10 seconds per 

cycle), and a final elongation step of 68
 o

C for 15 minutes. PCR cycles were terminated at 25, 

20, 18, and 15 cycles to ensure amplification was terminated in the linear range. Initially 

elongation times were systematically reduced in an attempt to bias PCR amplification of 

mutant genomes (containing deletions) in preference over wild-type genomes, however no 

additional polymorphic bands were observable. 

 

Real Time PCR   

Relative mitochondrial genome frequency was determined by Real time PCR using a 

Lightcycler 1.5 (Roche, West Sussex, UK). A 152 bp conserved region of the mitochondrial 

genome was amplified using ATCAACTGGCTTCAATCTACTTCTC (forward) and 

GTAAATCTAAAGACAGGGGTTAGGC (reverse) primers. This was normalized against 

the amplification of a 155 bp region of the nuclear encoded β actin gene using 

CGGCAGAAGAGAGAACCAGTG (forward) and TGACTGGCCCGCTACCTCTT 

(reverse) primers.  
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PCR reaction volumes of 15 µl were prepared containing 1x Brilliant
®

SYBR
®
 Green QPCR 

master mix (Stratagene, Leicester, UK), 0.5 µM of forward and reverse primer and 5 ng 

template DNA.  Reactions were put through an initial denaturing step at 95 oC for 10 minutes; 

followed by 40 cycles of 95
 o

C for 30 seconds, 55
 o

C for 1 minute and 72
 o

C for 30 seconds. 

This was followed by standard melt curve analysis. A standard curve was performed to 

determine primer efficiency using serial 1 in 10 dilutions of template. Cycle threshold (Ct) 

values were recorded and converted to relative quantification (E
-∆∆Ct

,
 
where E = efficiency and 

Ct = cycle threshold) according to Pfaffl (2001). 

 

Enzyme Kinetics Assays 

Cells were harvested and resuspended in Phosphate Buffered Saline (PBS) solution 

supplemented with 10 % glycerol, and stored at -20 
o
C. Protein concentration was determined 

using a modification of the Bradford assay (Bradford 1976). Assays were performed using 

minor modifications of the OxPhos enzyme kinetics assays described by James et al (1996). 

 

Complex II-III analysis 

The measurement of complex II-III is based on the reaction: 

succinate + oxidised cytochrome c  = (II-III) =>  malate + reduced cytochrome c 

Reactions for Complex II-III were prepared with 50 mM KH2PO4, 0.1 mM 

Ethylenediaminetetraacetic acid (EDTA), pH7.4, 25 mM Succinate, 2 mM KCN, 0.4 mM 

Rotenone and 0.1 mM oxidised cytochrome c equilibrated to 30 
o
C for 5 minutes prior to the 

addition of 10 µl sample (20-200 µg) total cell protein. Absorbance was recorded at 550 nm 

(ε550 = 21.1 nM-1cm-1). Complex II-III activity was confirmed using 100 µM myxothiazol.   



11 

 

 

Complex IV Analysis  

The measurement of complex IV is based on the reaction; 

reduced cytochrome c + ½ 02+ 2H
+
 + 2e

-
  = (IV) =>  oxidised cytochrome c + H2O.  

Reactions for complex IV contained 200 mM Tris, 10 µM EDTA, pH 7.5, 0.4 mM Rotenone, 

0.6 µM  Antimycin A1 and 0.1 mM reduced cytochrome c and equilibrated to 30 
o
C for 5 

minutes prior to the addition of 10 µl sample (20-200 µg) total cell protein.  Absorbance was 

recorded at 520 nm (ε520 = 27.7 nM-1cm-1). Complex IV activity was confirmed using 2 mM 

KCN .   

 

Complex V Analysis  

The measurement of complex V is based on three reactions; 

The first reaction involves ATP is hydrolysed to ADP in the presence of complex V and this 

ADP is reformed by a reaction with phosphoenolpyruvate (PEP) in the presence of pyruvate 

kinase (PK) to form ATP and pyruvate. The second reaction involves pyruvate being 

converted to lactate by lactate dehydrogenase (LDH)  and the oxidation of NADH to NAD is 

measured at 340 nm (ε340 =  6.811 nM
-1

cm
-1

). 

ATP  = (V) =>  ATP +Pi 

ADP + PEP  = PK =>  ATP + Pyruvate 

Pyruvate + NADH  = LDH =>  Lactate + NAD 

Reactions for complex V contained 100 mM Tris, 50 mM KCl, 2 mM MgCl2, 0.2 mM EDTA, 

pH 8, 0.125 mM NADH, 2.5 mM MgATP, 4 U PK, 10 U LDH, 2 mM KCN, 0.4 mM 
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Rotenone, 5 µM Antimycin A1 and 1 mM PEP and were equilibrated to 30 
o
C for 5 minutes 

prior to the addition of 10 µl sample 20-200 µg total cell protein. Absorbance was recorded at 

340 nm (ε340 = 6.811 nM-1cm-1) until no fluctuation was seen (MgATP contains a small 

amount of ADP; therefore any fluctuation observed is ADP conversion to ATP). Complex V 

activity was confirmed using 10 µM oligomycin. 

 

MtDNA-Encoded Protein Synthesis Analysis 

The mitochondrial protein synthesis activity was measured following techniques described by 

King et al (1992) with some modifications. Cells were maintained at 37 
o
C for 2 hours in a 

suspension of 50 mM succinate, 20 mM ADP, 133 µM amino acid mix (minus lysine), 1 

mg/ml cycloheximide and 1 µl biotinylated tRNA
lys 

(Promega, Southampton, UK) in PBS 

buffer. 

Biotin incorporation into nascent mtDNA-encoded proteins was stopped by the addition of 10 

mM Lysine along with a further incubation at 37 oC for 5 minutes to prevent partial synthesis 

of biotinylated nascent proteins. Cells were resuspended in PBS buffer and Laemlii Buffer 

was added to each sample (final concentrations 2 %, Sodium Dodecyl Sulphate (SDS), 10 % 

glycerol, 5 % 2-mercaptoethanol, 600 mM Tris pH 6.8 and bromophenol blue).  Protein 

concentration in each sample was determined using a modification of the Bradford assay 

(Bradford 1976) and samples diluted as required to ensure equal loading. Samples were 

heated to 100 oC for 10 minutes then 20µl of each loaded  on an SDS polyacrylamide gel 

containing a 15 % separating layer and a 5 % stacking layer with running buffer (0.25 M Tris, 

1.92 M Glycine and 1% SDS, pH 8.3) at ~6 mA until sufficient separation was achieved. 

Proteins were transferred, by semi-dry western blot, onto a Polyvinylidene Fluoride (PVDF) 
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membrane (AGB Scientific, Dublin, Ireland) using Transfer Buffer (0.39 mM Glycine, 48 

mM Tris, 0.037% SDS and 20% methanol). The membrane was blocked using Tris Buffered 

Saline with Tween (TBST) buffer (100 mM Tris, 150 mM NaCl and 0.1 % Tween20, pH 7.5) 

over night. The membrane was then washed using a 1:10,000 dilution of streptavidin-HRP 

conjugate/ TBST for 1 hour to allow binding to occur.  Biotinylated proteins were visualised 

using chemiluminescence and autoradiography. Changes in protein synthesis were 

qualitatively identified. Protein identity was predicted using their known molecular weights 

(kDa). MtDNA-encoded origin of bands shown was confirmed using 100 µM 

chloramphenicol supplement in the cell suspension (data not shown). 

 

Statistics 

Values are expressed as the mean ± standard error of the mean (SEM). Data are representative 

of three or more experiments. The multiple measures analysis of variance (ANOVA) was 

performed to determine significance, and values were considered significant if p ≤ 0.05. 

 

Results 

 

Enzyme Kinetics Analysis 

Analysis of CHO-K1 cells showed that enzyme activity was affected from 4 hours post 0.5 

and 5 Gy direct exposure and ICCM (figure 1). Complex II-III activity post 5 Gy direct 

radiation and ICCM recovered to control levels by 12 hours post exposure. Recovery of 

complex V activity to control levels was observed 96 hours post direct exposure and ICCM 

exposure. Complex IV activity was observed as less that control 4 and 12 hours post ICCM 
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and recovered to levels similar to control 24 hours post ICCM and above control by 96 hours 

post ICCM. Complex IV activity post direct exposure was significantly less than control at all 

time points studied (figure 1).  

Complex II-III activity in exposed HPV-G cells was similar to control 4 hours post 5 Gy 

direct irradiation and activity post 5 Gy ICCM remained similar to control through 12 hours 

but increased significantly above control 24 hours post exposure and this increase was 

sustained 96 hours post exposure. Activity post 5Gy direct exposure showed a significant 

though transient increase through 12 and 24 hours post exposure, however activity fell 

significantly below control 96 hours post exposure (figure 2A).  

Complex IV activity in exposed HPV-G cells was significantly lower than control 4 hours 

post 5 Gy direct irradiation, a reduction that was sustained through 12, 24 and 96 hours post 

direct exposure. Activity post 5 Gy ICCM exposure showed a significant though transient 

reduction compared to control 4 hours post exposure, though recovered by 12 hours, a 

recovery that was sustained through 24 and 96 hours post exposure (figure 2B). 

Complex V activity in exposed HPV-G cells was similar to control 4 to 24 hours post 

5 Gy ICCM but was significantly less than control 96 hours post exposure. Activity post 5 Gy 

direct exposure showed a significant though transient reduction compared to control 4 hours 

post exposure, though recovered by 12 hours, a recovery that was sustained through 24 and 96 

hours post exposure (figure 2C). Indeed the effects of 5 mGy and 0.5 Gy irradiations were 

similar to that of 5 Gy when measured 4 hours post exposure. A summary of direct radiation 

and bystander effects on the enzymes of OxPhos of both cell lines is provided in table 1. 
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Mitochondrial In organello Protein Synthesis Analysis 

CHO-K1 cells post direct treatment (figure 3A) show a decrease in mitochondrial protein 

synthesis observed as early as 4 hours post 5Gy direct exposure, which increased through 12 

to a level above control 24 hours later. However, there was a decrease in synthesis compared 

to that of control 96 hours post 5 Gy treatment. Reduced synthesis was observed with 

decreasing dose at 96 hours post exposure, with a reduction in synthesis post 5 mGy such that 

the majority of polypeptides were either not synthesised at all or synthesised at a level too low 

to be detected (figure 3A). 

ICCM treatment of CHO-K1 cells had less pronounced effects on mitochondrial protein 

synthesis, though effects were observable as early as 4 hours post treatment where ND1 and 

ND6 synthesis was reduced. This reduction appeared transient as synthesis recovered through 

12, 24 and up to 96 hours post exposure (figure 3B). 

HPV-G cells that were exposed to direct irradiation showed no change in mitochondrial 

protein synthesis at any time point post 5 Gy (figure 4a). Interestingly, at 96 hours post 0.5 Gy 

altered synthesis was observed, with CO1 protein appearing greatly reduced. Furthermore, at 

96 hours post 0.5 Gy irradiation there were two irregular sized proteins synthesised (of 

approximately 50 and 15 kDa) and these proteins were not observed in any of the other 

treated samples or in the control (figure 4A).   

ICCM treated HPV-G cells showed no significant changes in protein synthesis until 96 hours 

post exposure. At this time, cells post 5Gy ICCM showed a marked increase in protein 

synthesis, whereas cells post 0.5 Gy and 5mGy ICCM showed reduced protein synthesis 

(figure 4B). 
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Long Range PCR Analysis 

HPV-G cells were exposed to direct irradiation and ICCM as described previously. Long 

range PCR was carried out to identify non-specific large deletions. An equal amount of DNA 

was added to each PCR reaction, using a primer set to amplify almost the entire genome. No 

large deletions were found, although reduced PCR-product band intensities were an 

observable feature 96 hours later, however only post higher doses of direct radiation. This 

reduced PCR efficiency of only long range PCR product, is suggested to result from global 

non-specific mtDNA damage (as no similar loss was observed in short product amplification 

as shown subsequently in figure 6). No loss of PCR efficiency was observed at 12 or 24 hours 

post treatments (figure 5A) suggesting a delay in this damage being expressed. At 96 hours 

post direct treatment, efficiency of PCR product amplification was seen to be severely reduced 

post 0.5 Gy and 5 Gy (figure 5A). Interestingly, there is no loss of PCR efficiency post 5 mGy 

direct exposure (figure 5A). In ICCM treated samples it was observed that at no time or dose, 

was any damage load to mtDNA sufficient to impair PCR (figure 5). 

 

Real Time PCR Analysis 

HPV-G cells were exposed to direct irradiation and ICCM as described previously. Real time 

PCR was carried out to determine any changes in mitochondrial genome frequency. A 

significant increase in mitochondrial genome frequency was first observed in HPV-G cells 24 

hours post direct and ICCM treatment. However, ICCM values were lower than those of direct 

irradiation (figure 6A). At 96 hours post direct treatment the increase in genome frequency 

was maintained, although this was not comparable with results at 96 hours post ICCM 
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treatment, where it was observed that mitochondrial genome frequency was not significantly 

greater than control. This would infer that the increase in mitochondrial genome number 

observed post ICCM is transient where as the increase post direct radiation is sustained (figure 

6A).   

In HPV-G cells 96 hours post direct exposure to 0.5 Gy and 5 Gy, mitochondrial genome 

frequency was significantly greater than that of control cells. However, the most noticeable 

effect was observed following 5 mGy exposure, where mitochondrial genome frequency was 

approximately 3.5 fold that of control cells (figure 6B). An increase in mitochondrial genome 

frequency was also observed 96 hours post exposure to ICCM treated cells, though not as 

pronounced as in HPV-G cells 96 hours post 5 mGy direct irradiation (figure 6B). 

 

Discussion  

OxPhos enzyme complex assays are a sensitive tool for identifying changes in mitochondrial 

function. Previous studies have employed this to examine mitochondrial function in 

mitochondrial myopathy and age related studies (Palacino et al. 2004, Chinnery et al. 2002, 

Schon et al. 1997, Lesnefsky and Hoppel 2003, Blanco et al. 2004). Complex I analysis was 

excluded as this assay cannot be accurately performed in whole cell fractions due to non-

mitochondrial NADH-quinone oxidoreductase activity and limited permeability of substrates 

to complex I. The complex I assay can only be accurately performed on mitochondrial 

fractions (Chretien et al. 2003). Mitochondrial fraction preparation is very inefficient from 

cultured cells and would have necessitated the use of over 10 times the amount of cells. 

Complex II and III assays were pooled for analysis as the complex III activator, ubiquinone, is 

prohibitively expensive and problematic to source. Instead, by pooling complex II and III 
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together, it is possible to activate complex II to drive the ubiquinone source that is already in 

the mitochondrial membrane for complex III analysis.  In this study an interesting pattern was 

identified in the sensitivity of the individual enzymes of OxPhos to radiation. Complex IV 

activity was very low post direct exposure and did not recover with time. This result compares 

favourably with previous studies on age associated mitochondrial dysfunction (Chinnery et al. 

2002, Schon et al. 1997, Lesnefsky and Hoppel 2003). Schon et al (1997) reported that all 

complexes were affected by age and was most pronounced in complex IV. This study 

indicates that the sensitivity of complex IV to damage by γ radiation is much more 

pronounced than the other enzyme complexes. Letellier et al (1994) reported that complex IV 

activity had to exceed a critical value of 75% inhibition before a decrease in mitochondrial 

respiration could be observed. Muscle fibre studies have confirmed that the proportion of 

mutated mtDNA varies between muscle fibres and only mtDNA containing mutations over 

threshold levels displayed a deficiency in complex IV activity (Petruzzella et al. 1994, 

Moslemi et al. 1998). In CHO-K1 cells, activity decreased as a dose dependent response at 4 

hours post treatment in all enzyme complexes which was followed by a recovery in enzyme 

function occurring at 12 hours post treatment with the exception of complex IV post direct 

treatment. In HPV-G cells, only complex V analysis at 4 hours post direct treatment showed a 

similar dose dependent response pattern as seen in CHO-K1 cells. HPV-G analysis for 

complex II-III showed that enzyme activity levels had an almost immediate increase at the 

lower doses in both direct an ICCM treated cells with delayed transient increase observed 12 

and 24 hours post 5Gy. Decreases in OxPhos activity along with increases in mitochondrial 

mass have been reported. Blanco et al (2004) showed a correlation between ageing 

individuals over 40 years suffering from osteoarthritis and mitochondrial dysfunction. These 
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authors reported that significant decreases were observed in complexes I, II and III activity 

along with increased mitochondrial mass, apoptotic bodies, B-cell leukaemia/lymphoma 2 

protein (bcl-2) expression, Caspase 3 expression and nitric oxide. A decrease in the 

mitochondrial membrane potential was also noted.  It is unclear from the present however if 

the observed loss of mitochondrial OxPhos enzyme function, both transient and apparently 

more long term, in the case of Complex IV in directly exposed cells, may be attributable to 

radiation injury or indeed may represent a mitochondrially-mediated adaptive response to 

radiation injury as more recently mitochondrial dysfunction has been has been demonstrated 

to induce G1-S arrest (Owusu-Ansah et al. 2008). Indeed mitochondrial function is now 

understood to play a much more significant role in cell cycle regulation than has been 

understood heretofore (Finkel and Hwang 2009). 

 Mutations of mtDNA have been established as a primary contributor to mitochondrial 

disease (Jones et al. 2008).  Wardel et al (2003) observed malignant cells in colorectal cancer 

had an altered phenotype that was due to mutations in the mtDNA.   

Mutations may impair synthesis or a change in translation of one, several, or all of the thirteen 

polypeptides that make up OxPhos (DiMauro 2004, Rossignol et al. 2003).  Mutations in 

mtDNA may result in the production of a premature stop codon, a random mutation at the 

ribosomal active recognition site, on a tRNA gene, rRNA gene or gene region coding for 

either the active or folding region of the protein. It has been shown that a single point 

mutation in human mitochondrial tRNA
Met

 induced the mitochondrial myopathy Leber’s 

Hereditary Optic Neuropathy disease (Jones et al. 2008), resulting in severely abnormal 

mitochondria with OxPhos defects. In this study mitochondrial protein synthesis was used to 

assess irregular mitochondrial function. This technique has been used to identify 
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mitochondrial disorders such as Myoclonic Epilepsy with Ragged Red Fibres (MERRF) 

syndrome (Hanna et al. 1995) and Mitochondrial Encephalopathy, Lactic Acidosis, and 

Stroke-like episodes (MELAS) syndrome (Chomyn et al. 1992). Yan et al (2005) reported 

that the A1491G/C1409T mutation associated with deafness displayed reduced expression of 

Cytochrome b (Cytb) and Cytochrome c oxidase subunit I (CO1) and mitochondrial protein 

synthesis was almost completely abolished. In the present study, irregular mtDNA-directed 

protein synthesis was identified in both CHO-K1 and HPV-G cells post direct irradiation and 

ICCM treatment. The most noticeable observation using this technique was irregular synthesis 

as early as 4 hours post treatment in CHO-K1 cells and 96 hours post treatments in HPV-G 

cells. This suggested HPV-G cell response was not as immediate as observed in CHO-K1 

cells. However, HPV-G cells appear more sensitive than CHO-K1 cells to lower doses, as 

proteins synthesis was severely reduced. Furthermore, in HPV-G cells 96 hours post 0.5Gy 

irradiation, CO1 and Cytochrome c oxidase subunit 2 (CO2) protein synthesis was affected. 

However, synthesis of two irregular sized proteins (~50 and 15kDa) was observed. One 

possible explanation could be the occurrence of a deletion spanning regions encoding both 

CO1 and CO2 (though this should have been observed by long range PCR analysis) or 

mutation(s) giving rise to a premature stop codon occurring in the polypeptide sequence of 

CO1 and CO2. In CHO-K1 cells a transient loss of mitochondrial protein synthesis was 

observed at 4 hours post treatment. These results are in agreement with our previous 

polarographic analysis (Nugent et al. 2007) which shows a significant though transient loss of 

oxygen consumption rates observed as early as 4 hours, while delayed effects were observed 

in the HPV-G cells. In samples, where changes in mtDNA-encoded protein synthesis were 

similar across all peptides synthesised, one of several factors may be involved: (i) variation in 
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mitochondrial mass; (ii) variation in mtDNA copy number; (iii) variation in transcription / 

translation rate; (iv) altered cell cycle status. 

 Long range PCR, did not identify any induced deletions, neither in directly irradiated 

cells nor ICCM treated cells, the purpose for which the analytical technique was originally 

selected. It is likely that this technique required a deletion frequency higher than that induced 

in any exposed cells in this study. Unexpectedly, though this technique did provide a probable 

marker for what we termed ‘non-specific global mitochondrial genome damage’. This was 

characterised through the observation of an apparent loss of PCR efficiency that did not 

correlate with mitochondrial genome frequency data. This suggests that damage continued to 

accumulate post exposure, to a sufficient degree to reduce PCR efficiency 96 hours post 

exposure, but only post higher doses of direct radiation. This would suggest that both a 

threshold level of exposure is required as well as a threshold of time post exposure before this 

damage is manifest at a detectable level. When these results are compared to short-range 

product amplification, where we found that mitochondrial genome frequency increased, it 

may be concluded that this loss of long range PCR efficiency could be an effective marker for 

‘global mtDNA damage’ most likely as a result of strand breaks in the mitochondrial genome. 

 Alterations in mitochondrial genome copy number are frequently observed in many 

cancers (Tan et al. 2006, Kurtz et al. 2004, Tseng et al. 2006, Yu et al. 2007). Tan et al (2006) 

reported that an increase of mtDNA copy number in oesophageal cancer was found in some 

tumours while a decrease was found in others. These authors also reported that no significant 

correlation was observed between copy number and mtDNA mutation load. Instead there 

appeared to be an inverse relationship in mtDNA content and tumour size. However, other 

studies found that a significant decrease in mtDNA copy number was associated with cancers 
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such as breast cancer (Tseng et al. 2006, Yu et al. 2007), prostate cancer and colon cancer 

(Lee et al. 2007).  In this study relative mitochondrial genome frequency was confirmed using 

real time PCR. These values are largely in parallel with our previous mitochondrial mass data 

(Nugent et al. 2007). Increases in mitochondrial mass will serve to counteract loss of function 

and recover ATP synthesis capacity. An increase in mitochondrial genome frequency occurs 

in a dose dependent manner after direct irradiation although is independent of ICCM treatment 

and most likely represents an adaptive response by the mitochondrial population to radiation-

induced stress. The increase in genome frequency was also seen to increase in an inverse dose 

dependent manner with an approximate 3.5 fold increase observed after 5mGy direct 

irradiation. The increased response observed here correlates with that reported previously by 

our group on mtDNA deletion analysis (Murphy et al. 2005) which showed that mtDNA4881 

deletion was more frequent in cells post low-dose direct γ-radiation dose when examined 96 

hours later. Furthermore, we did not observe any correlation between genome frequency and 

OxPhos enzyme complex activity and, given that mtDNA encodes only a small number of the 

peptides making up these enzyme complexes, this is not unexpected. 

 More recently, mitochondrial function has been shown to have an important role in the 

production of a bystander response. Mothersill et al (2000, 2002) has shown the energetic 

status of mitochondria, to be a critical factor in the bystander effect and furthermore, Tartier et 

al (2007) reported that mitochondrial function was required for both radiation and bystander 

factors to induce tumour protein 53 (p53) binding protein foci. Zhou et al (2008) and Hei 

(2006) suggest a loss of mitochondrial molecular components make individual cells more 

susceptible to damage.  



23 

 

 In general, the mitochondrial population of CHO-K1 cells were observed in this study 

to be more radiosensitive than those of HPV-G cells particularly in terms of time between 

exposure and damage being manifest. However HPV-G cells appeared more sensitive to the 

lower exposure doses. Furthermore, it has also to be considered that the bystander is more 

pronounced in irradiated HPV-G cells than in irradiated CHO-K1 cells (Mothersill et al. 2002, 

Vines et al. 2008). The difficulty in measuring bystander-induced mitochondrial changes most 

not be understated, given that that the energetic status of mitochondria, namely their capacity 

for ATP synthesis, has been previously observed as a potential critical factor in the bystander 

effect (Mothersill et al. 2000). Differences between the responses of the mitochondrial 

populations of CHO-K1 and HPV-G cells are therefore likely to be attributable to the specific 

cell-lines and not to their radiosensitivity or bystander factor sensitivity.  

It must also be noted that there was a significant observable effect at every radiation 

dose employed in this study and even 5 mGy was not too low to induce a mitochondrial effect 

in both cell types. However data presented in the present study do not entirely concur with 

trends seen in previous analyses of low level radiation and bystander effects, namely that the 

strength of the bystander effects appear similar irrespective of the original exposure dose 

(Prise et al. 1998, Seymour and Mothersill 2000) and warrants future investigation.  

 When mitochondrial dysfunction and DNA damage observed in cells exposed to direct 

radiation are considered in the context of previous clonogenic analysis of these cell types 

exposed to 5Gy direct γ radiation, where cell death was equal in both HPV-G and CHO-K1 

cells (Mothersill et al. 2000, Vines et al. 2008), no direct correlations may be drawn. This 

suggests that the radiosensitivity of cells as determined by clonogenic survival is not a good 

indicator of the radiosensitivity of the mitochondria contained therein. Determining the 
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radiosensitivity of these sensitive organelles would be better served by employing such 

endpoints as used in this study along with Polarography (Nugent et al, 2007), mtDNA 

mutation analysis (Murphy et al, 2005) and oxidative stress analysis. Indeed Fisher and 

Goswami (2008) observed that radioresistance in human pancreatic cancer cells was regulated 

by  antioxidant enzyme activity targeted to mitochondria. 

Another striking result that we report and to the best of our knowledge has not 

previously been reported before, is the development of a potential marker for what we termed 

‘non-specific global mitochondrial DNA damage’ through identifying a decrease in PCR 

efficiency that cannot be attributed to reduced template.  It is likely that the problematic 

correlation of observed mitochondrial dysfunction with mtDNA damage is mainly due to the 

complexity of this unique genome including the many point mutations and deletions incurred 

by it and its multi-heterogenic nature. Overall, results from this study suggest that there may 

be grave implications for the long term viability of mitochondria contained in the distant 

progeny of cells that survive radiation, given that the mitochondrial genome has the ability to 

carry significant heterogeneity without loss of function. Eventually though, a threshold will 

ultimately be reached beyond which the fate of these cells is uncertain and this includes the 

cell populations in this study that received very low doses comparable to that delivered by 

Computerized Axial Tomography (CAT) scans and other radiation-based routine medical 

diagnostics. There is also significant interest among many researchers in harnessing the 

bystander phenomenon for cancer therapeutic gain (reviewed by Prise et al. 2009) and which 

shows great potential, however the present study and recent studies by the authors (Murphy et 

al. 2005, Nugent et al. 2007) indicates that such studies must factor the sensitivity of 
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mitochondria to both low dose direct radiation and bystander factors and the potential of 

mtDNA to accumulate damage with time, long-term post exposure. 
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Figure 2 
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Table 1. 

A CHO-K1 cells 4 hours post 5Gy direct exposed CHO

Direct 5mGy 0.5Gy 5Gy  4 

hours 

12 

hours 

II-III    
II-

III   

IV  
  

IV 
  

V    
V 

  
 

 

B CHO-K1 cells 4 hours post 5Gy ICCM exposed CHO

ICCM 5mGy 0.5Gy 5Gy  4 

hours 

12 

hours 

II-III    
II-

III   

IV    
IV 

  
V    

V 
  

 

 

C HPV-G cells 4 hours post 5Gy direct exposed HPV

Direct 5mGy 0.5Gy 5Gy  4 
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hours 

II-III 
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III 
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D HPV-G cells 4 hours post 5Gy ICCM exposed HPV
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Figure 3  
 

 

 

 

 

 
 

 

 

 

 

 

 

 A                                                                 
       Time Post Exp (hrs)    C      4      12     24     96   96    96            

        Dose (Gy)                    -       5       5      5       5    0.5   0.005       

 

                                         B  
Time post ICCM (hrs)         C      4      12     24    96    96    96            

Dose  (Gy)                            -      5       5       5      5    0.5   0.005       
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Figure 4 

 

 

 

 

 
 

 

 

 

 

 

                                                       A  
 Time post Exp (hrs)       C      4      12    24    96    96    96            

 Dose (Gy)                       -      5      5      5      5     0.5   0.005       

                                         B  
Time post ICCM (hrs)  C       4    12     24    96   96     96            

Dose  (Gy)                     -        5     5      5      5    0.5   0.005       
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Figure 5  
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Figure 6  
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Figure 1: CHO-K1 OxPhos Enzyme Kinetics post direct radiation and ICCM. 

CHO-K1 cells were harvested 4, 12, 24 and 96 hours post radiation and ICCM treatment.  

Enzyme kinetic assays were carried out to determine individual enzyme activity for (A) 

complex II-III, (B) complex IV and (C) complex V. * denotes significant when p≤ 0.05.  

Error bars indicate the standard error of the mean for triplicate experiments. 

 

Figure 2: HPV-G OxPhos Enzyme Kinetics post direct irradiation and ICCM. 

HPV-G cells were harvested 4, 12, 24 and 96 hours post radiation and ICCM treatment.  

Enzyme kinetic assays were carried out to determine individual enzyme activity for (A) 

complex II-III, (B) complex IV and (C) complex V. * denotes significant when p≤ 0.05. Error 

bars indicate the standard error of the mean for triplicate experiments. 

 

Table 1: Summary of Ox Phos Enzyme Kinetics Data 

Figures 1 and 2 are summarised here to better illustrate changes in OxPhos enzyme activity in 

CHO-K1 cells post direct irradiation (A), post ICCM (B) and in HPV-G cells post direct 

radiation (C) and ICCM (D). indicates a significant loss in activity compared to control,  

indicates a significant increase in activity compared to control and  indicates no 

significant change in activity compared to control. 

 

Figure 3: MtDNA-encoded protein synthesis in CHO-K1 cells.   

MtDNA directed protein synthesis in CHO-K1 cells was analysed 4, 12, 24 and 96 hours after 

either (A) direct irradiation or (B) ICCM exposure. Only mtDNA-encoded polypeptides were 
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labelled with biotin and detected by conjugation, luminol conversion and autoradiography. 

Irregular banding patterns are highlighted with an arrow. Images are representative of 

triplicate experiments. 

 

Figure 4: MtDNA-encoded protein synthesis in HPV-G cells. 

MtDNA directed protein synthesis in HPV-G cells was analysed 4, 12, 24 and 96 hours 

after either (A) direct irradiation or (B) ICCM exposure. Only mtDNA-encoded 

polypeptides were labelled with biotin and detected by conjugation, luminol conversion 

and autoradiography. Irregular banding patterns are highlighted with an arrow. Images are 

representative of triplicate experiments. 

 

Figure 5:  Long Range PCR Analysis of HPV-G mtDNA 

DNA was isolated post (A) direct irradiation and (B) ICCM treatment and equal amounts 

were added to each PCR reaction. Almost the entire genome was amplified and products 

were separated on a 0.8 % agarose. Images are representative of triplicate experiments. 

Equal DNA loading was confirmed by amplification of a region of conserved nuclear 

DNA (data not shown). 

 

Figure 6: HPV-G Mitochondrial genome frequency analysis using Real-Time PCR.  

Cells were harvested (A) 4, 12, 24 and 96 hours post 5Gy and 5Gy ICCM treatment and 

(B) 96 hours post 5mGy, 0.5Gy and 5Gy treatment.  DNA was isolated and PCR was 

carried out with primers located in a conserved region of the mitochondrial genome and in 

the and in the β-actin gene in the nuclear genome (housekeeper). Relative frequency of 
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mtDNA was normalised against β-actin gene frequency and all data subsequently 

expressed as a percentage of control. Error bars indicate the standard error of the mean for 

triplicate experiments and * denotes statistical significance when p ≤ 0.05.  
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