56 research outputs found

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Sleep deprivation increases A1 adenosine receptor density in the rat brain.

    No full text
    Adenosine, increasing after sleep deprivation and acting via the A(1) adenosine receptor (A(1)AR), is likely a key factor in the homeostatic control of sleep. This study examines the impact of sleep deprivation on A(1)AR density in different parts of the rat brain with [(3)H]CPFPX autoradiography. Binding of [(3)H]CPFPX was significantly increased in parietal cortex (PAR) (7%), thalamus (11%) and caudate-putamen (9%) after 24 h of sleep deprivation compared to a control group with an undisturbed circadian sleep-wake rhythm. Sleep deprivation of 12 h changed receptor density regionally between -5% and +9% (motor cortex (M1), statistically significant) compared to the circadian control group. These results suggest cerebral A(1)ARs are involved in effects of sleep deprivation and the regulation of sleep. The increase of A(1)AR density could serve the purpose of not only maintaining the responsiveness to increased adenosine levels but also amplifying the effect of sleep deprivation and is in line with a sleep-induced homoeostatic reorganization at the synaptic level

    Sleep deprivation upregulates A1 adenosine receptors in the rat basal forebrain

    No full text
    Sleep deprivation increases the levels of extracellular adenosine and A1 receptor (A1R)mRNA in the cholinergic zone of the basal forebrain, a region involved in sleep homeostasis. To evaluate homeostatic control mechanisms, we examined the sleep deprivation-induced changes in the A1R density in rodent brain using [H]CPFPX receptor autoradiography. We also examined the role of nuclear factor-kappaB (NF-kappaB) in transcriptional upregulation of A1R mRNA by use of the inhibitor peptide SN50 to inhibit nuclear translocation of NF-kappaB. We found a significant increase in cholinergic basal forebrain A1R density following 24 h of sleep deprivation and evidence that the upregulation of A1R is mediated by NF-kappaB. The A1R increase may be important in sleep homeostasis, since the increase in A1R density would increase the inhibitory effect of given level of adenosine, thus increasing the gain of the homeostat

    Sleep Fragmentation reduces Hippocampal CA1 Pyramidal Cell Excitability and Response to Adenosine

    No full text
    Sleep fragmentation (SF) impairs the restorative/cognitive benefits of sleep via as yet unidentified alterations in neural physiology. Previously, we found that hippocampalsynaptic plasticity and spatial learning are impaired in a rat model of SF which utilizes a treadmill to awaken the animals every 2 min, mimicking the frequency of awakenings observed in human sleep apnea patients. Here, we investigated the cellular mechanisms responsible for these effects, using whole-cell patch-clamp recordings. 24 h of SF decreased the excitability of hippocampal CA1 pyramidal neurons via decreased input resistance, without alterations in other intrinsic membrane or action potential properties (when compared to cage controls, or to exercise controls that experienced the same total amount of treadmill movement as SF rats). Contrary to our initial prediction, the hyperpolarizing response to bath applied adenosine (30 μM) was reduced in the CA1 neurons of SF treated rats. Our initial prediction was based on the evidence that sleep loss upregulates cortical adenosine A1 receptors; however, the present findings are consistent with a very recent report that hippocampal A1 receptors are not elevated by sleep loss. Thus, increased adenosinergic inhibition is unlikely to be responsible for reduced hippocampal long-term potentiation in SF rats. Instead, the reduced excitability of CA1 pyramidal neurons observed here may contribute to the loss of hippocampal long-term potentiation and hippocampus-dependent cognitive impairments associated with sleep disruption
    corecore