580 research outputs found

    Reconceptualization of Advertising Clutter in the Online Environment [Slides]

    Get PDF
    Slides from a presentation given at the Advertising Division, Association for Education in Journalism and Mass Communication Annual Conference, San Francisco, August 2-5, 2006 by Louisa Ha and Kim McCann

    Complementary-like Graphene Logic Gates Controlled by Electrostatic Doping

    Full text link
    Realization of logic circuits from graphene is very attractive for high-speed nanoelectronics. However, the intrinsic ambipolar nature hinders the formation of graphene logic devices with the conventional complementary architecture. Using electrostatic doping modulation, we show here a facile method to control the charge neutrality points and form a complementary-like structure, in which the ambipolar conduction is used as a benefit rather than a drawback to construct logic devices. A band gap is also introduced in the channels to improve the switching ratio of the graphene transistors. For the first time, complementary-like NOR and NAND logic gates were demonstrated. This method provides a possible route for logic circuits from ambipolar graphene and, in principle, can be also extended to other ambipolar semiconductors, such as organic compounds and carbon nanotube thin films.Comment: 16 pages, 7 figure

    Residual stresses in multi-layered silicon-on-sapphire thin film systems

    Get PDF
    This paper uses the finite element method to analyse the generation and evolution of residual stress in silicon-on-sapphire thin film systems during cooling. The effects of material properties, thin film structures and processing conditions, on the stress distribution were explored in detail. It was found that under certain conditions, significant stress concentration and discontinuity can take place to initiate crack and/or delamination in the systems. However, these can be minimised by controlling the buffer layer thickness

    Big data and data repurposing – using existing data to answer new questions in vascular dementia research

    Get PDF
    Introduction: Traditional approaches to clinical research have, as yet, failed to provide effective treatments for vascular dementia (VaD). Novel approaches to collation and synthesis of data may allow for time and cost efficient hypothesis generating and testing. These approaches may have particular utility in helping us understand and treat a complex condition such as VaD. Methods: We present an overview of new uses for existing data to progress VaD research. The overview is the result of consultation with various stakeholders, focused literature review and learning from the group’s experience of successful approaches to data repurposing. In particular, we benefitted from the expert discussion and input of delegates at the 9th International Congress on Vascular Dementia (Ljubljana, 16-18th October 2015). Results: We agreed on key areas that could be of relevance to VaD research: systematic review of existing studies; individual patient level analyses of existing trials and cohorts and linking electronic health record data to other datasets. We illustrated each theme with a case-study of an existing project that has utilised this approach. Conclusions: There are many opportunities for the VaD research community to make better use of existing data. The volume of potentially available data is increasing and the opportunities for using these resources to progress the VaD research agenda are exciting. Of course, these approaches come with inherent limitations and biases, as bigger datasets are not necessarily better datasets and maintaining rigour and critical analysis will be key to optimising data use

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    Influence of stress on snack consumption in middle school girls

    Get PDF
    Stress has been known to change dietary behaviors and food intakes in individuals. The purpose of this study was to investigate the effect of stress level on the frequency and the amount of snack consumption. The high stress group (HS) showed significantly higher frequency of consumption for bread, chips, cookies, ramyeon, and frozen snacks (p<0.05) compared to low stress group (LS) with higher frequency of snack consumption (p<0.01), and increased intakes of energy, carbohydrates, and sodium from snacks (p<0.01) than LS. As the stress level became higher, the proportions of students with irregular meals, overeating, and night snacking increased (p<0.01). Also, 33.0% of the subjects answered that they consumed an increased amount of snacks when they were feeling stressed. Our results indicated that stress has negative influence on snack consumption in middle school girls

    Compartments revealed in food-web structure

    Full text link
    Compartments(1) in food webs are subgroups of taxa in which many strong interactions occur within the subgroups and few weak interactions occur between the subgroups(2). Theoretically, compartments increase the stability in networks(1-5), such as food webs. Compartments have been difficult to detect in empirical food webs because of incompatible approaches(6-9) or insufficient methodological rigour(8,10,11). Here we show that a method for detecting compartments from the social networking science(12-14) identified significant compartments in three of five complex, empirical food webs. Detection of compartments was influenced by food web resolution, such as interactions with weights. Because the method identifies compartmental boundaries in which interactions are concentrated, it is compatible with the definition of compartments. The method is rigorous because it maximizes an explicit function, identifies the number of non-overlapping compartments, assigns membership to compartments, and tests the statistical significance of the results(12-14). A graphical presentation(14) reveals systemic relationships and taxa-specific positions as structured by compartments. From this graphic, we explore two scenarios of disturbance to develop a hypothesis for testing how compartmentalized interactions increase stability in food webs(15-17).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62960/1/nature02115.pd
    • 

    corecore