111 research outputs found

    Mathematical Modelling of Metabolic Regulation in Aging

    Get PDF
    The underlying cellular mechanisms that characterize aging are complex and multifaceted. However, it is emerging that aging could be regulated by two distinct metabolic hubs. These hubs are the pathway defined by the mammalian target of rapamycin (mTOR) and that defined by the NAD+-dependent deacetylase enzyme, SIRT1. Recent experimental evidence suggests that there is crosstalk between these two important pathways; however, the mechanisms underpinning their interaction(s) remains poorly understood. In this review, we propose using computational modelling in tandem with experimentation to delineate the mechanism(s). We briefly discuss the main modelling frameworks that could be used to disentangle this relationship and present a reduced reaction pathway that could be modelled. We conclude by outlining the limitations of computational modelling and by discussing opportunities for future progress in this area

    Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction (HARP-2) trial : study protocol for a randomized controlled trial

    Get PDF
    Acute lung injury (ALI) is a common devastating clinical syndrome characterized by life-threatening respiratory failure requiring mechanical ventilation and multiple organ failure. There are in vitro, animal studies and pre-clinical data suggesting that statins may be beneficial in ALI. The Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2) trial is a multicenter, prospective, randomized, allocation concealed, double-blind, placebo-controlled clinical trial which aims to test the hypothesis that treatment with simvastatin will improve clinical outcomes in patients with ALI

    A deterministic oscillatory model of microtubule growth and shrinkage for differential actions of short chain fatty acids.

    Get PDF
    Short chain fatty acids (SCFA), principally acetate, propionate, butyrate and valerate, are produced in pharmacologically relevant concentrations by the gut microbiome. Investigations indicate that they exert beneficial effects on colon epithelia. There is increasing interest in whether different SCFAs have distinct functions which may be exploited for prevention or treatment of colonic diseases including colorectal cancer (CRC), inflammatory bowel disease and obesity. Based on experimental evidence, we hypothesised that odd-chain SCFAs may possess anti-mitotic capabilities in colon cancer cells by disrupting microtubule (MT) structural integrity via dysregulation of Ξ²-tubulin isotypes. MT dynamic instability is an essential characteristic of MT cellular activity. We report a minimal deterministic model that takes a novel approach to explore the hypothesised pathway by triggering spontaneous oscillations to represent MT dynamic behaviour. The dynamicity parameters in silico were compared to those reported in vitro. Simulations of untreated and butyrate (even-chain length) treated cells reflected MT behaviour in interphase or untreated control cells. The propionate and valerate (odd-chain length) simulations displayed increased catastrophe frequencies and longer periods of MT-fibre shrinkage. Their enhanced dynamicity was dissimilar to that observed in mitotic cells, but parallel to that induced by MT-destabilisation treatments. Antimicrotubule drugs act through upward or downward modulation of MT dynamic instability. Our computational modelling suggests that metabolic engineering of the microbiome may facilitate managing CRC risk by predicting outcomes of SCFA treatments in combination with AMDs

    A mathematical model of aging-related and cortisol induced hippocampal dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hippocampus is essential for declarative memory synthesis and is a core pathological substrate for Alzheimer's disease (AD), the most common aging-related dementing disease. Acute increases in plasma cortisol are associated with transient hippocampal inhibition and retrograde amnesia, while chronic cortisol elevation is associated with hippocampal atrophy. Thus, cortisol levels could be monitored and managed in older people, to decrease their risk of AD type hippocampal dysfunction. We generated an in silico<it/>model of the chronic effects of elevated plasma cortisol on hippocampal activity and atrophy, using the systems biology mark-up language (SBML). We further challenged the model with biologically based interventions to ascertain if cortisol associated hippocampal dysfunction could be abrogated.</p> <p>Results</p> <p>The in silico<it/>SBML model reflected the in vivo<it/>aging of the hippocampus and increased plasma cortisol and negative feedback to the hypothalamic pituitary axis. Aging induced a 12% decrease in hippocampus activity (HA), increased to 30% by acute and 40% by chronic elevations in cortisol. The biological intervention attenuated the cortisol associated decrease in HA by 2% in the acute cortisol simulation and by 8% in the chronic simulation.</p> <p>Conclusion</p> <p>Both acute and chronic elevations in cortisol secretion increased aging-associated hippocampal atrophy and a loss of HA in the model. We suggest that this first SMBL model, in tandem with in vitro<it/>and in vivo<it/>studies, may provide a backbone to further frame computational cortisol and brain aging models, which may help predict aging-related brain changes in vulnerable older people.</p

    RAND appropriateness panel to determine the applicability of UK guidelines on the management of acute respiratory distress syndrome (ARDS) and other strategies in the context of the COVID-19 pandemic.

    Get PDF
    BACKGROUND: COVID-19 has become the most common cause of acute respiratory distress syndrome (ARDS) worldwide. Features of the pathophysiology and clinical presentation partially distinguish it from 'classical' ARDS. A Research and Development (RAND) analysis gauged the opinion of an expert panel about the management of ARDS with and without COVID-19 as the precipitating cause, using recent UK guidelines as a template. METHODS: An 11-person panel comprising intensive care practitioners rated the appropriateness of ARDS management options at different times during hospital admission, in the presence or absence of, or varying severity of SARS-CoV-2 infection on a scale of 1-9 (where 1-3 is inappropriate, 4-6 is uncertain and 7-9 is appropriate). A summary of the anonymised results was discussed at an online meeting moderated by an expert in RAND methodology. The modified online survey comprising 76 questions, subdivided into investigations (16), non-invasive respiratory support (18), basic intensive care unit management of ARDS (20), management of refractory hypoxaemia (8), pharmacotherapy (7) and anticoagulation (7), was completed again. RESULTS: Disagreement between experts was significant only when addressing the appropriateness of diagnostic bronchoscopy in patients with confirmed or suspected COVID-19. Adherence to existing published guidelines for the management of ARDS for relevant evidence-based interventions was recommended. Responses of the experts to the final survey suggested that the supportive management of ARDS should be the same, regardless of a COVID-19 diagnosis. For patients with ARDS with COVID-19, the panel recommended routine treatment with corticosteroids and a lower threshold for full anticoagulation based on a high index of suspicion for venous thromboembolic disease. CONCLUSION: The expert panel found no reason to deviate from the evidence-based supportive strategies for managing ARDS outlined in recent guidelines

    Avian Influenza Viruses Infect Primary Human Bronchial Epithelial Cells Unconstrained by Sialic Acid Ξ±2,3 Residues

    Get PDF
    Avian influenza viruses (AIV) are an important emerging threat to public health. It is thought that sialic acid (sia) receptors are barriers in cross-species transmission where the binding preferences of AIV and human influenza viruses are sias Ξ±2,3 versus Ξ±2,6, respectively. In this study, we show that a normal fully differentiated, primary human bronchial epithelial cell model is readily infected by low pathogenic H5N1, H5N2 and H5N3 AIV, which primarily bind to sia Ξ±2,3 moieties, and replicate in these cells independent of specific sias on the cell surface. NHBE cells treated with neuraminidase prior to infection are infected by AIV despite removal of sia Ξ±2,3 moieties. Following AIV infection, higher levels of IP-10 and RANTES are secreted compared to human influenza virus infection, indicating differential chemokine expression patterns, a feature that may contribute to differences in disease pathogenesis between avian and human influenza virus infections in humans

    Effect and cost of an after-school dance programme on the physical activity of 11-12 year old girls: The Bristol Girls Dance Project, a school-based cluster randomised controlled trial

    Get PDF
    Β© 2015 Jago et al. Background: The aim of this study was to examine the effectiveness and cost of an after-school dance intervention at increasing the physical activity levels of Year 7 girls (age 11-12). Methods: A cluster randomised controlled trial was conducted in 18 secondary schools. Participants were Year 7 girls attending a study school. The Bristol Girls Dance Project (BGDP) intervention consisted of up to forty, 75-minute dance sessions delivered in the period immediately after school by experienced dance instructors over 20-weeks. The pre-specified primary outcome was accelerometer assessed mean minutes of weekday moderate to vigorous physical activity (MVPA) at time 2 (52weeks are T0 baseline assessments). Secondary outcomes included accelerometer assessed mean minutes of weekday MVPA at time 1 (while the intervention was still running) and psychosocial outcomes. Intervention costs were assessed. Results: 571 girls participated. Valid accelerometer data were collected from 549 girls at baseline with 508 girls providing valid accelerometer data at baseline and time 2. There were no differences between the intervention and control group for accelerometer assessed physical activity at either time 1 or time 2. Only one third of the girls in the intervention arm met the pre-set adherence criteria of attending two thirds of the dance sessions that were available to them. Instrumental variable regression analyses using complier average causal effects provided no evidence of a difference between girls who attended the sessions and the control group. The average cost of the intervention was Β£73 per girl, which was reduced to Β£63 when dance instructor travel expenses were excluded. Conclusion: This trial showed no evidence that an after-school dance programme can increase the physical activity of Year 7 girls. The trial highlighted the difficulty encountered in maintaining attendance in physical activity programmes delivered in secondary schools. There is a need to find new ways to help adolescent girls to be physically active via identifying ways to support and encourage sustained engagement in physical activity over the life course. Trial registration: ISRCTN5288252

    Differential Carbohydrate Recognition by Campylobacter jejuni Strain 11168: Influences of Temperature and Growth Conditions

    Get PDF
    The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS) and the infrequently passaged, original, virulent (11168-O) isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25Β°C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure

    Biomarkers of acute lung injury: worth their salt?

    Get PDF
    The validation of biomarkers has become a key goal of translational biomedical research. The purpose of this article is to discuss the role of biomarkers in the management of acute lung injury (ALI) and related research. Biomarkers should be sensitive and specific indicators of clinically important processes and should change in a relevant timeframe to affect recruitment to trials or clinical management. We do not believe that they necessarily need to reflect pathogenic processes. We critically examined current strategies used to identify biomarkers and which, owing to expedience, have been dominated by reanalysis of blood derived markers from large multicenter Phase 3 studies. Combining new and existing validated biomarkers with physiological and other data may add predictive power and facilitate the development of important aids to research and therapy
    • …
    corecore