14 research outputs found
A Secondary Assessment of the Impact of Voice Interface Turn Delays on Driver Attention and Arousal in Field Conditions
Voice interface use has become increasingly popular in vehicles. It is important that these systems divert drivers’ attention from the primary driving task as little as possible, and numerous efforts have been devoted to categorizing demands associated with these systems. Nonetheless, there is still much to be learned about how various implementation characteristics impact attention. This study presents a secondary analysis of the delay time between when users finish giving commands and when the system responds. It considers data collected on 4 different production vehicle voice interfaces and a mounted smartphone in field driving. Collapsing across systems, drivers showed an initial increase in heart rate, skin conductance level, and off-road glance time while waiting for a system to respond; a gradual decrease followed as delays continued. The observed attentional and arousal changes are likely due to an increase in anticipation following a speech command, followed by a general disengagement from the interface as delay times increase. Safety concerns associated with extended delay times and suggestion of an optimal range for system response times are highlighted
A Preliminary Assessment of Perceived and Objectively Scaled Workload of a Voice-Based Driver Interface
Interaction with a voice-command interface for radio control, destination entry, MP3 song selection, and phone dialing was assessed along with traditional manual radio control and a multi-level audio–verbal calibration task (nback) on-road in 60 drivers. Subjective workload, compensatory behavior, and physiological indices of cognitive workload suggest that there may be both potential benefits and cautions in the implementation of a representative production level interface
Human Factors Assessment of the En Route Information Display System
Human factors researchers at the Federal Aviation Administration have developed new methods of operation for Air Traffic Control Specialists working in Airport Traffic Control Towers (ATCT). The newly redesigned and enhanced Tower Operations Digital Data System (TODDS) provides a means to assist ATCT controllers with flight data management, communication, and coordination by reducing cognitive and physical task load. The TODDS prototype designs include separate solutions for ATCTs either with or without surface surveillance capability. This report addresses the results of a recent usability test by providing a description of design changes and new features that compose the TODDS. The author also recommends the use of a touchscreen training protocol. Pending further investigation, the TODDS may help reduce the risk of runway incursions, ease the flow of surface operations, and support the Staffed Virtual Tower concept
Novel therapeutic approaches for pulmonary fibrosis
Pulmonary fibrosis represents the end stage of a number of heterogeneous conditions and is, to a greater or lesser degree, the hallmark of the interstitial lung diseases. It is characterized by the excessive deposition of extracellular matrix proteins within the pulmonary interstitium leading to the obliteration of functional alveolar units and in many cases, respiratory failure. While a small number of interstitial lung diseases have known aetiologies, most are idiopathic in nature, and of these, idiopathic pulmonary fibrosis is the most common and carries with it an appalling prognosis – median survival from the time of diagnosis is less than 3 years. This reflects the lack of any effective therapy to modify the course of the disease, which in turn is indicative of our incomplete understanding of the pathogenesis of this condition. Current prevailing hypotheses focus on dysregulated epithelial–mesenchymal interactions promoting a cycle of continued epithelial cell injury and fibroblast activation leading to progressive fibrosis. However, it is likely that multiple abnormalities in a myriad of biological pathways affecting inflammation and wound repair – including matrix regulation, epithelial reconstitution, the coagulation cascade, neovascularization and antioxidant pathways – modulate this defective crosstalk and promote fibrogenesis. This review aims to offer a pathogenetic rationale behind current therapies, briefly outlining previous and ongoing clinical trials, but will focus on recent and exciting advancements in our understanding of the pathogenesis of idiopathic pulmonary fibrosis, which may ultimately lead to the development of novel and effective therapeutic interventions for this devastating condition
A Dirty Waste—How Renewable Energy Policies Have Financed the Unsustainable Waste-to-Energy Industry
The end of the 20th Century saw a major shift in the United States’ approach to energy policy. After decades focused on fossil fuel production, the country began to realize that renewable sources of energy were the way of the future. Motivated by environmental concerns and a realization that oil is a finite resource, the federal government and local governments began adopting economic policies that rewarded investment in and production of renewable, clean technology. Governments relied on both mandates and tax incentives to encourage the use of energy from sources like solar and wind power. Waste-to-Energy (“WTE”) power is another form of energy production that is classified as renewable. Thus, WTE has benefited significantly from renewable energy policies. WTE, however, is a form of energy produced by burning trash and is neither environmentally friendly nor particularly sustainable. Yet, the WTE industry owes its existence to those government programs designed to fund sustainable sources of electricity. With WTE drawing from the same pot of government resources, the policies that were written to stimulate the sustainable energy field and protect the environment have undermined those very goals by subsidizing the WTE industry. This Note summarizes the WTE process and the laws that allowed it to grow, argues that WTE is not economically sound or environmentally sustainable, and proposes legislative changes to prevent more harm from WTE in the future
A Secondary Assessment of the Impact of Voice Interface Turn Delays on Driver Attention and Arousal in Field Conditions
Voice interface use has become increasingly popular in vehicles. It is important that these systems divert drivers’ attention from the primary driving task as little as possible, and numerous efforts have been devoted to categorizing demands associated with these systems. Nonetheless, there is still much to be learned about how various implementation characteristics impact attention. This study presents a secondary analysis of the delay time between when users finish giving commands and when the system responds. It considers data collected on 4 different production vehicle voice interfaces and a mounted smartphone in field driving. Collapsing across systems, drivers showed an initial increase in heart rate, skin conductance level, and off-road glance time while waiting for a system to respond; a gradual decrease followed as delays continued. The observed attentional and arousal changes are likely due to an increase in anticipation following a speech command, followed by a general disengagement from the interface as delay times increase. Safety concerns associated with extended delay times and suggestion of an optimal range for system response times are highlighted