149 research outputs found

    Vertical distribution of cyanobacteria biomass and cyanotoxin production in the polymictic Siemianówka Dam Reservoir (eastern Poland)

    Get PDF
    Abstract. The summer-autumn dominance of the toxic cyanobacterium Planktothrix agardhii was described in the lowland polymictic Siemianówka Dam Reservoir (SDR) in 2010 and 2011. The study was conducted at a station located in the deepest part of the reservoir. The species composition of phytoplankton was very similar at the four depths analyzed. Microcystins were continually present in the cyanobacterial biomass. Demethylated microcystin-RR (dmMC-RR) and microcystin-RR (MC-RR) were identified as the major microcystin variants in most samples, while demethylated microcystin-LR (dmMC-LR) and microcystin-LR (MC-LR) were each recorded only once. The concentration of microcystin-RR correlated strongly with the biomass of P. agardhii. The effect of environmental factors on cyanobacterial biomass the production of microcystins by cyanobacteria was minor, but increased water temperatures and pH favored the production of microcystins. Phytoplankton biomass was also influenced by how water outflow from the reservoir was regulated; the biomas increased with depth when the upper flaps were opened, but it was very similar throughout the water column when they were closed. According to the Polish phytoplankton-based index (IFPL), the ecological potential of the reservoir was determined to be poor

    Response of endolithic chroococcidiopsis strains from the polyextreme Atacama desert to light radiation

    Full text link
    Cyanobacteria exposed to high solar radiation make use of a series of defense mechanisms, including avoidance, antioxidant systems, and the production of photoprotective compounds such as scytonemin. Two cyanobacterial strains of the genus Chroococcidiopsis from the Atacama Desert – which has one of the highest solar radiation levels on Earth- were examined to determine their capacity to protect themselves from direct photosynthetically active (PAR) and ultraviolet radiation (UVR): the UAM813 strain, originally isolated from a cryptoendolithic microhabitat within halite (NaCl), and UAM816 strain originally isolated from a chasmoendolithic microhabitat within calcite (CaCO3). The oxidative stress induced by exposure to PAR or UVR C PAR was determined to observe their short-term response, as were the long-term scytonemin production, changes in metabolic activity and ultrastructural damage induced. Both strains showed oxidative stress to both types of light radiation. The UAM813 strain showed a lower acclimation capacity than the UAM816 strain, showing an ever-increasing accumulation of reactive oxygen species (ROS) and a smaller accumulation of scytonemin. This would appear to reflect differences in the adaptation strategies followed to meet the demands of their different microhabitats.This study was supported by grant PGC2018-094076-B-I00 from MCIU/AEI (Spain) and FEDER (UE). MC was supported by grant BES 2014-069106 from the Spanish Ministry of Science and Innovation (MCINN).Peer reviewe

    Nostocyclopeptides as new inhibitors of 20s proteasome.

    Get PDF
    Nostocyclopeptides (Ncps) are a small class of bioactive nonribosomal peptides produced solely by cyanobacteria of the genus Nostoc. In the current work, six Ncps were isolated from Nostoc edaphicum strain CCNP1411. The bioactivity of these compounds was tested in vitro against 20S proteasome, a proteolytic complex that plays an important role in maintaining cellular proteostasis. Dysfunction of the complex leads to many pathological disorders. The assays indicated selective activity of specific Ncp variants. For two linear peptide aldehydes, Ncp-A2-L and Ncp-E2-L, the inhibitory effects on chymotrypsin-like activity were revealed, while the cyclic variant, Ncp-A2, inactivated the trypsin-like site of this enzymatic complex. The aldehyde group was confirmed to be an important element of the chymotrypsin-like activity inhibitors. The nostocyclopeptides, as novel inhibitors of 20S proteasome, increased the number of natural products that can be considered potential regulators of cellular processes

    Cyanobacteria and Their Metabolites in Mono- and Polidominant Shallow Eutrophic Temperate Lakes

    Get PDF
    Monodominant (one species dominates) or polidominant (multiple species dominate) cyanobacterial blooms are pronounced in productive freshwater ecosystems and pose a potential threat to the biota due to the synthesis of toxins. Seasonal changes in cyanobacteria species and cyanometabolites composition were studied in two shallow temperate eutrophic lakes. Data on cyanobacteria biomass and diversity of dominant species in the lakes were combined with chemical and molecular analyses of fifteen potentially toxin-producing cyanobacteria species (248 isolates from the lakes). Anatoxin-a, saxitoxin, microcystins and other non-ribosomal peptides formed the diverse profiles in monodominant (Planktothrix agardhii) and polidominant (Aphanizomenon gracile, Limnothrix spp. and Planktolyngbya limnetica) lakes. However, the harmfulness of the blooms depended on the ability of the dominant species to synthesize cyanometabolites. It was confirmed that P. agardhii produced a greater amount and diverse range of MCs and other NRPs. In the polidominant lake, isolates of the co-dominant A. gracile, L. planctonica and P. limnetica synthesized no or only small amounts of cyanometabolites. In general, the profile of cyanometabolites was greater in cyanobacteria isolates than in environmental samples, indicating a high potential for toxic cyanobacteria bloom

    Pseudanabaena galeata CCNP1313 : biological activity and peptides production

    Get PDF
    Even cyanobacteria from ecosystems of low biodiversity, such as the Baltic Sea, can constitute a rich source of bioactive metabolites. Potent toxins, enzyme inhibitors, and anticancer and antifungal agents were detected in both bloom-forming species and less commonly occurring cyanobacteria. In previous work on the Baltic Pseudanabaena galeata CCNP1313, the induction of apoptosis in the breast cancer cell line MCF-7 was documented. Here, the activity of the strain was further explored using human dermal fibroblasts, African green monkey kidney, cancer cell lines (T47D, HCT-8, and A549(ACE2/TMPRSS2)) and viruses (SARS-CoV-2, HCoV-OC43, and WNV). In the tests, extracts, chromatographic fractions, and the main components of the P. galeata CCNP1313 fractions were used. The LC-MS/MS analyses of the tested samples led to the detection of forty-five peptides. For fourteen of the new peptides, putative structures were proposed based on MS/MS spectra. Although the complex samples (i.e., extracts and chromatographic fractions) showed potent cytotoxic and antiviral activities, the effects of the isolated compounds were minor. The study confirmed the significance of P. galeata CCNP1313 as a source of metabolites with potent activity. It also illustrated the difficulties in assigning the observed biological effects to specific metabolites, especially when they are produced in minute amounts

    A collaborative evaluation of LC-MS/MS based methods for BMAA analysis: soluble bound BMAA found to be an important fraction.

    Get PDF
    Exposure to β-Ν-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D3BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%-32%), implying that D3BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery ( < 10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis

    Harmful algal blooms and their effects in coastal seas of Northern Europe

    Get PDF
    Highlights • Fish mortalities due to harmful algae cause substantial economic and social costs for the fish farming industry in the northeastern Atlantic, North Sea and adjacent European waters • Toxin syndromes associated with Diarrhetic Shellfish Toxins and Paralytic Shellfish Toxins and their regulation have the most profound effect on the bivalve aquaculture industry in the northeastern Atlantic region • Cyanobacteria and cyanotoxins are mainly problems in brackish water areas, particularly in the Baltic Sea • Emerging threats to the shellfish and finfish industries include the known presence of the phycotoxins azaspiracids and goniodomins • The IOC-ICES-PICESHAEDAT contains time-series baseline information on harmful algal events in EuropeHarmful algal blooms (HAB) are recurrent phenomena in northern Europe along the coasts of the Baltic Sea, Kattegat-Skagerrak, eastern North Sea, Norwegian Sea and the Barents Sea. These HABs have caused occasional massive losses for the aquaculture industry and have chronically affected socioeconomic interests in several ways. This status review gives an overview of historical HAB events and summarises reports to the Harmful Algae Event Database from 1986 to the end of year 2019 and observations made in long term monitoring programmes of potentially harmful phytoplankton and of phycotoxins in bivalve shellfish. Major HAB taxa causing fish mortalities in the region include blooms of the prymnesiophyte Chrysochromulina leadbeateri in northern Norway in 1991 and 2019, resulting in huge economic losses for fish farmers. A bloom of the prymesiophyte Prymnesium polylepis (syn. Chrysochromulina polylepis) in the Kattegat-Skagerrak in 1988 was ecosystem disruptive. Blooms of the prymnesiophyte Phaeocystis spp. have caused accumulations of foam on beaches in the southwestern North Sea and Wadden Sea coasts and shellfish mortality has been linked to their occurrence. Mortality of shellfish linked to HAB events has been observed in estuarine waters associated with influx of water from the southern North Sea. The first bloom of the dictyochophyte genus Pseudochattonella was observed in 1998, and since then such blooms have been observed in high cell densities in spring causing fish mortalities some years. Dinoflagellates, primarily Dinophysis spp., intermittently yield concentrations of Diarrhetic Shellfish Toxins (DST) in blue mussels, Mytilus edulis, above regulatory limits along the coasts of Norway, Denmark and the Swedish west coast. On average, DST levels in shellfish have decreased along the Swedish and Norwegian Skagerrak coasts since approximately 2006, coinciding with a decrease in the cell abundance of D. acuta. Among dinoflagellates, Alexandrium species are the major source of Paralytic Shellfish Toxins (PST) in the region. PST concentrations above regulatory levels were rare in the Skagerrak-Kattegat during the three decadal review period, but frequent and often abundant findings of Alexandrium resting cysts in surface sediments indicate a high potential risk for blooms. PST levels often above regulatory limits along the west coast of Norway are associated with A. catenella (ribotype Group 1) as the main toxin producer. Other Alexandrium species, such as A. ostenfeldii and A. minutum, are capable of producing PST among some populations but are usually not associated with PSP events in the region. The cell abundance of A. pseudogonyaulax, a producer of the ichthyotoxin goniodomin (GD), has increased in the Skagerrak-Kattegat since 2010, and may constitute an emerging threat. The dinoflagellate Azadinium spp. have been unequivocally linked to the presence of azaspiracid toxins (AZT) responsible for Azaspiracid Shellfish Poisoning (AZP) in northern Europe. These toxins were detected in bivalve shellfish at concentrations above regulatory limits for the first time in Norway in blue mussels in 2005 and in Sweden in blue mussels and oysters (Ostrea edulis and Crassostrea gigas) in 2018. Certain members of the diatom genus Pseudo-nitzschia produce the neurotoxin domoic acid and analogs known as Amnesic Shellfish Toxins (AST). Blooms of Pseudo-nitzschia were common in the North Sea and the Skagerrak-Kattegat, but levels of AST in bivalve shellfish were rarely above regulatory limits during the review period. Summer cyanobacteria blooms in the Baltic Sea are a concern mainly for tourism by causing massive fouling of bathing water and beaches. Some of the cyanobacteria produce toxins, e.g. Nodularia spumigena, producer of nodularin, which may be a human health problem and cause occasional dog mortalities. Coastal and shelf sea regions in northern Europe provide a key supply of seafood, socioeconomic well-being and ecosystem services. Increasing anthropogenic influence and climate change create environmental stressors causing shifts in the biogeography and intensity of HABs. Continued monitoring of HAB and phycotoxins and the operation of historical databases such as HAEDAT provide not only an ongoing status report but also provide a way to interpret causes and mechanisms of HABs

    Cyanobacteria and cyanotoxins in Polish freshwater bodies.

    Get PDF
    In this work, the authors examined the presence of cyanobacteria and cyanotoxins in 21 samples collected from fresh water bodies located in 5 provinces in Poland: Lublin (2), Podlasie (1), Pomerania (6), Warmia-Masuria (1) and Wielkopolska (11). In addition, to determine the general pattern of geographical distribution, frequency of cyanobacteria occurrence, and cyanotoxins production, the published data from 238 fresh water bodies in Poland were reviewed. On the basis of these collected results, we concluded that Planktothrix, Aphanizomenon, Microcystis and Dolichospermum were dominant. The general pattern in geographical distribution of the identified cyanobacterial genera was typical of other eutrophic waters in Europe. The production of cyanotoxins was revealed in 18 (86%) of the 21 samples analyzed in the present work and in 74 (75%) of the 98 total water bodies for which the presence of toxins had been examined. Among the 24 detected microcystin variants, [Asp3]MC-RR was most common. These results can be verified when more data from the less explored water bodies in the southern and eastern parts of Poland are available.The authors would like to acknowledge the European Cooperation in Science and Technology, COST Action ES 1105 "CYANOCOST- Cyanobacterial blooms and toxins in water resources: Occurrence, impacts and management" for adding value to this study through networking and knowledge sharing with European experts and researchers in the field.42435837

    The essentials of marine biotechnology.

    Get PDF
    Coastal countries have traditionally relied on the existing marine resources (e.g., fishing, food, transport, recreation, and tourism) as well as tried to support new economic endeavors (ocean energy, desalination for water supply, and seabed mining). Modern societies and lifestyle resulted in an increased demand for dietary diversity, better health and well-being, new biomedicines, natural cosmeceuticals, environmental conservation, and sustainable energy sources. These societal needs stimulated the interest of researchers on the diverse and underexplored marine environments as promising and sustainable sources of biomolecules and biomass, and they are addressed by the emerging field of marine (blue) biotechnology. Blue biotechnology provides opportunities for a wide range of initiatives of commercial interest for the pharmaceutical, biomedical, cosmetic, nutraceutical, food, feed, agricultural, and related industries. This article synthesizes the essence, opportunities, responsibilities, and challenges encountered in marine biotechnology and outlines the attainment and valorization of directly derived or bio-inspired products from marine organisms. First, the concept of bioeconomy is introduced. Then, the diversity of marine bioresources including an overview of the most prominent marine organisms and their potential for biotechnological uses are described. This is followed by introducing methodologies for exploration of these resources and the main use case scenarios in energy, food and feed, agronomy, bioremediation and climate change, cosmeceuticals, bio-inspired materials, healthcare, and well-being sectors. The key aspects in the fields of legislation and funding are provided, with the emphasis on the importance of communication and stakeholder engagement at all levels of biotechnology development. Finally, vital overarching concepts, such as the quadruple helix and Responsible Research and Innovation principle are highlighted as important to follow within the marine biotechnology field. The authors of this review are collaborating under the European Commission-funded Cooperation in Science and Technology (COST) Action Ocean4Biotech – European transdisciplinary networking platform for marine biotechnology and focus the study on the European state of affairs
    corecore