26,131 research outputs found

    Development and testing of dry chemicals in advanced extinguishing systems for jet engine nacelle fires

    Get PDF
    The effectiveness of dry chemical in extinguishing and delaying reignition of fires resulting from hydrocarbon fuel leaking onto heated surfaces such as can occur in jet engine nacelles is studied. The commercial fire extinguishant dry chemical tried are sodium and potassium bicarbonate, carbonate, chloride, carbamate (Monnex), metal halogen, and metal hydroxycarbonate compounds. Synthetic and preparative procedures for new materials developed, a new concept of fire control by dry chemical agents, descriptions of experiment assemblages to test dry chemical fire extinguishant efficiencies in controlling fuel fires initiated by hot surfaces, comparative testing data for more than 25 chemical systems in a 'static' assemblage with no air flow across the heated surface, and similar comparative data for more than ten compounds in a dynamic system with air flows up to 350 ft/sec are presented

    Growing massive black holes through super-critical accretion of stellar-mass seeds

    Full text link
    The rapid assembly of the massive black holes that power the luminous quasars observed at z∼6−7z \sim 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses ∼105 M⊙\sim 10^5\,\rm M_\odot, which can then reach a billion solar mass while accreting at the Eddington limit. Here we propose an alternative scenario based on radiatively inefficient super-critical accretion of stellar-mass holes embedded in the gaseous circum-nuclear discs (CNDs) expected to exist in the cores of high redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the "slim disc" solution can increase its mass by 3 orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of super-critical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.Comment: 12 pages, 8 figures, 2 tables. Accepted for publication in MNRA

    The Emotional Self-Efficacy Scale: Adaptation and Validation for Young Adolescents

    Get PDF
    Emotional self-efficacy (ESE) is an important aspect of emotional functioning, with current measures for children and adolescents focused on the measurement of self-beliefs in relation to the management of emotions. In the present study, we report the psychometric properties of the first adaptation of the Emotional Self-Efficacy Scale for youth (Youth-ESES) that measures additional aspects of ESE, such as perceiving and understanding emotions and helping others modulate their emotions. Participants were 192 young adolescents aged 11 to 13 years from a U.K. state school. They completed the Youth-ESES and measures of ability emotional intelligence (EI) and cognitive ability. Results support the same four-factor structure that has been previously documented using the adult version of the ESES, with the four subscales being largely independent from cognitive ability and only moderately related to ability EI. However, the four subscales were less differentiated in the present study compared with adult data previously published, suggesting that there is a strong general factor underlying young adolescents’ ESE scores. Overall, the results suggest that the adapted Youth-ESES can be reliably used with youth, and that confidence in how a young person feels about his or her emotional functioning remains distinct from emotional skill

    Gas Giant Protoplanets Formed by Disk Instability in Binary Star Systems

    Full text link
    We present a suite of three dimensional radiative gravitational hydrodynamics models suggesting that binary stars may be quite capable of forming planetary systems similar to our own. The new models with binary companions do not employ any explicit artificial viscosity, and also include the third (vertical) dimension in the hydrodynamic calculations, allowing for transient phases of convective cooling. The calculations of the evolution of initially marginally gravitationally stable disks show that the presence of a binary star companion may actually help to trigger the formation of dense clumps that could become giant planets. We also show that in models without binary companions, which begin their evolution as gravitationally stable disks, the disks evolve to form dense rings, which then break-up into self-gravitating clumps. These latter models suggest that the evolution of any self-gravitating disk with sufficient mass to form gas giant planets is likely to lead to a period of disk instability, even in the absence of a trigger such as a binary star companion.Comment: 52 pages, 28 figure

    Orbital Decay of Supermassive Black Hole Binaries in Clumpy Multiphase Merger Remnants

    Full text link
    We simulate an equal-mass merger of two Milky Way-size galaxy discs with moderate gas fractions at parsec-scale resolution including a new model for radiative cooling and heating in a multi-phase medium, as well as star formation and feedback from supernovae. The two discs initially have a 2.6×106 M⊙2.6\times10^6\mathrm{~M_{\odot}} supermassive black hole (SMBH) embedded in their centers. As the merger completes and the two galactic cores merge, the SMBHs form a a pair with a separation of a few hundred pc that gradually decays. Due to the stochastic nature of the system immediately following the merger, the orbital plane of the binary is significantly perturbed. Furthermore, owing to the strong starburst the gas from the central region is completely evacuated, requiring ∼10\sim10~Myr for a nuclear disc to rebuild. Most importantly, the clumpy nature of the interstellar medium has a major impact on the the dynamical evolution of the SMBH pair, which undergo gravitational encounters with massive gas clouds and stochastic torquing by both clouds and spiral modes in the disk. These effects combine to greatly delay the decay of the two SMBHs to separations of a few parsecs by nearly two orders of magnitude, ∼108\sim 10^8 yr, compared to previous work. In mergers of more gas-rich, clumpier galaxies at high redshift stochastic torques will be even more pronounced and potentially lead to stronger modulation of the orbital decay. This suggests that SMBH pairs at separations of several tens of parsecs should be relatively common at any redshift.Comment: submitted to MNRAS; Comments very welcom

    Low power, compact charge coupled device signal processing system

    Get PDF
    A variety of charged coupled devices (CCDs) for performing programmable correlation for preprocessing environmental sensor data preparatory to its transmission to the ground were developed. A total of two separate ICs were developed and a third was evaluated. The first IC was a CCD chirp z transform IC capable of performing a 32 point DFT at frequencies to 1 MHz. All on chip circuitry operated as designed with the exception of the limited dynamic range caused by a fixed pattern noise due to interactions between the digital and analog circuits. The second IC developed was a 64 stage CCD analog/analog correlator for performing time domain correlation. Multiplier errors were found to be less than 1 percent at designed signal levels and less than 0.3 percent at the measured smaller levels. A prototype IC for performing time domain correlation was also evaluated

    Time-Dependent Models for Dark Matter at the Galactic Center

    Get PDF
    The prospects of indirect detection of dark matter at the galactic center depend sensitively on the mass profile within the inner parsec. We calculate the distribution of dark matter on sub-parsec scales by integrating the time-dependent Fokker-Planck equation, including the effects of self-annihilations, scattering of dark matter particles by stars, and capture in the supermassive black hole. We consider a variety of initial dark matter distributions, including models with very high densities ("spikes") near the black hole, and models with "adiabatic compression" of the baryons. The annihilation signal after 10 Gyr is found to be substantially reduced from its initial value, but in dark matter models with an initial spike, order-of-magnitude enhancements can persist compared with the rate in spike-free models, with important implications for indirect dark matter searches with GLAST and Air Cherenkov Telescopes like HESS and CANGAROO.Comment: Four page

    The Hall instability of weakly ionized, radially stratified, rotating disks

    Get PDF
    Cool weakly ionized gaseous rotating disk, are considered by many models as the origin of the evolution of protoplanetary clouds. Instabilities against perturbations in such disks play an important role in the theory of the formation of stars and planets. Thus, a hierarchy of successive fragmentations into smaller and smaller pieces as a part of the Kant-Laplace theory of formation of the planetary system remains valid also for contemporary cosmogony. Traditionally, axisymmetric magnetohydrodynamic (MHD), and recently Hall-MHD instabilities have been thoroughly studied as providers of an efficient mechanism for radial transfer of angular momentum, and of density radial stratification. In the current work, the Hall instability against nonaxisymmetric perturbations in compressible rotating fluids in external magnetic field is proposed as a viable mechanism for the azimuthal fragmentation of the protoplanetary disk and thus perhaps initiating the road to planet formation. The Hall instability is excited due to the combined effect of the radial stratification of the disk and the Hall electric field, and its growth rate is of the order of the rotation period.Comment: 15 pages, 2 figure

    Heterogeneous Dynamics of Coarsening Systems

    Get PDF
    We show by means of experiments, theory and simulations, that the slow dynamics of coarsening systems displays dynamic heterogeneity similar to that observed in glass-forming systems. We measure dynamic heterogeneity via novel multi-point functions which quantify the emergence of dynamic, as opposed to static, correlations of fluctuations. Experiments are performed on a coarsening foam using Time Resolved Correlation, a recently introduced light scattering method. Theoretically we study the Ising model, and present exact results in one dimension, and numerical results in two dimensions. For all systems the same dynamic scaling of fluctuations with domain size is observed.Comment: Minor changes; to be published in Phys. Rev. Let
    • …
    corecore