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Heterogeneous Dynamics of Coarsening Systems

P. Mayer,1 H. Bissig,2 L. Berthier,3,4 L. Cipelletti,5 J. P. Garrahan,6 P. Sollich,1 and V. Trappe2

1Department of Mathematics, King’s College, Strand, London, WC2R 2LS, United Kingdom
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We show by means of experiments, theory, and simulations that the slow dynamics of coarsening
systems displays dynamic heterogeneity similar to that observed in glass-forming systems. We measure
dynamic heterogeneity via novel multipoint functions which quantify the emergence of dynamic, as
opposed to static, correlations of fluctuations. Experiments are performed on a coarsening foam using
time-resolved correlation, a recently introduced light scattering method. Theoretically we study the
Ising model, and present exact results in one dimension, and numerical results in two dimensions. For
all systems the same dynamic scaling of fluctuations with domain size is observed.
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Glassy and jammed materials display similar phe-
nomenology, characterized, in particular, by slow and
nonequilibrium dynamics, whose microscopic origin is
still being actively investigated [1–3]. Recent research
has shown that despite the absence of static ordering,
glass formers exhibit nontrivial spatial correlations of
the local dynamics, resulting in dynamic heterogeneity
[4,5]. Here, we take the view that slow dynamics is
intrinsically associated to dynamic heterogeneity, as sug-
gested by studies of the glass transition [6].

Dynamic heterogeneity has to be measured by means
of statistical correlators that probe more than two points
in space and time. An ideal experiment or calculation
would compare local configurations around position r at
times t and t��t via a two-time quantity, F�r; t;�t�.
Traditionally, only the dynamics averaged over t, r, or
thermal histories is discussed, Fav��t� � h1V �R
V d

drF�r; t;�t�i. In a glass former, Fav could be, for
example, the self-intermediate scattering function at a
given wave vector. By contrast, our goal is to detect
spatial correlations of the local dynamics. A natural
correlator is [4–6]

C�r;�t� �
1

V

Z
V
ddr0hF�r0; t;�t�F�r0 � r; t;�t�i

	 F2
av��t�; (1)

built from two-point, two-time quantities. It is easier to
measure the volume integral of (1), a dynamic suscepti-
bility ���t� 
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drC�r;�t�, which can be rewritten as
the variance of the fluctuations of the two-time dynamics,
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�
: (2)

Physically, dynamic fluctuations increase when the num-
ber of independent dynamic objects decreases, but nor-
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malizations ensure that � remains finite in the
thermodynamic limit, except at a dynamic critical point,
as discussed for supercooled liquids [7].

In this Letter, we focus on coarsening phenomena, as
one of the simplest and better understood physical situ-
ations characterized by slow dynamics and aging [8]. We
introduce new experimental and theoretical methods to
access � and C, and show that coarsening systems display
heterogeneous dynamics similar to that observed at equi-
librium in glass formers. We perform experiments on a
coarsening soft material, a dry foam, and we study the
Ising model in one and two dimensions. Although very
different, these systems display the same dynamic scal-
ing of fluctuations with domain size.

Experimentally, soft materials are well suited for in-
vestigating dynamic heterogeneity because the relevant
time and length scales are much larger than in molecular
systems, which greatly simplifies detailed dynamic mea-
surements.We use dynamic light scattering in the strongly
multiple scattering limit [diffusing wave spectroscopy
(DWS) [9]] to probe the dynamics of a shaving cream.
The foam coarsens as the time tw since its preparation
increases. The time-averaged intensity autocorrelation
function measured by DWS, g2�tw;�t� 	 1, decays expo-
nentially, with a characteristic rate, ��tw�, that decreases
with tw. This results from spatially and temporally local-
ized random rearrangements [10].

Traditional light scattering measurements use a point
detector and require an extended time average of the
intensity correlation function. Consequently, no informa-
tion on the fluctuations of the dynamics is accessible. To
overcome this limitation, we use the recently introduced
time-resolved correlation technique [11]. A charge-
coupled device (CCD) camera is used to record, at a
constant rate, the speckle pattern of the light scattered
2004 The American Physical Society 115701-1



FIG. 1. Dynamic susceptibility ��tw;�t� measured experi-
mentally in a coarsening foam (top), and numerically in the
d � 2 Ising model (bottom) for various ages tw.
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by the foam [12]. The degree of correlation, cI, between
speckles at times tw and tw � �t is calculated as

cI�tw;�t� �
hIp�tw�Ip�tw � �t�ip

hIp�tw�iphIp�tw � �t�ip
	 1; (3)

where Ip�tw� is the intensity measured at time tw by the
pth CCD pixel and h� � �ip denotes an average over all
pixels. Since different configurations yield different
speckle patterns, cI�tw;�t� quantifies the degree of cor-
relation of the foam between times tw and tw ��t.
Because the experiments are performed in the transmis-
sion geometry and in the strong multiple scattering re-
gime, each CCD pixel collects light coming from the
whole scattering volume. Therefore, cI�tw;�t� provides
time-resolved but spatially integrated dynamical infor-
mation. The standard intensity correlation function is
obtained via a further average, g2�tw;�t� 	 1 �
hcI�tw;�t�iT , which is analogous to the correlator Fav

defined above. Here, h� � �iT denotes an average over
�tw; tw � T
, with T � �	1, but short enough to prevent
any significant change of the dynamics due to coarsening.
In practice, we took T < 0:05tw for all ages, and checked
that our results do not depend on this choice. Dynamic
fluctuations are quantified via the variance of cI, simi-
larly to Eq. (2): ��tw;�t� � hc2I �tw;�t�iT 	 hcI�tw;�t�i

2
T .

The dynamic susceptibility ��tw;�t� measured during
the aging of the foam, from tw � 3350 to 26 200 sec is
shown in Fig. 1. Trivial contributions to the fluctuations
due to the CCD noise and the finite number of speckles
115701-2
have been subtracted from the data [13]. For all tw, we
find that � exhibits a peak at time lags �t?�tw� close to
�	1�tw�. Moreover, as the foam ages and coarsens, the
height of the peak, �?�tw� � ��tw;�t?� increases and its
position shifts to larger times, in striking analogy with
numerical observations in supercooled liquids [4,5]. To
our knowledge, no experimental measurement of the
dynamic susceptibility was so far reported.

A similar behavior can be observed in a very different
coarsening system. We study the dynamics of the Ising
model on a regular lattice quenched from a random state
to the ferromagnetic phase. Domains of positive and
negative magnetization develop and grow with tw, in
analogy with the bubbles of the foam. The Hamiltonian
is H � 	

P
hi;ji�i�j, the sum being over nearest neighbor

pairs. From (1), one would naively study C0�l	
k; tw;�t� � h�k �t��k �tw��l �t��l �tw�i 	 h�k�t��k�tw�i2,
where t � �t� tw. However, C0 is trivially dominated by
equal-time two-point correlations: consider, for instance,
the large time limit, where C0�l	 k; tw;�t! 1� !
h�k�t��l�t�ih�k�tw��l�tw�i. The appropriate correlator to
consider is instead [14]

C�l	 k; tw;�t� � 	h�k�t��k�tw��l�t��l�tw�i

� h�k�t��k�tw�ih�l�t��l�tw�i

� h�k�t��l�t�ih�k�tw��l�tw�i

	 h�k�t��l�tw�ih�k�tw��l�t�i; (4)

where the relative signs are consequences of the fermi-
onic nature of fluctuations in the Ising model. The corre-
sponding susceptibility is defined as in Eq. (2),

��tw;�t� �
X
n

C�n; tw;�t�: (5)

Note that (5) is not positive definite, but to ease the
comparison with previous research, (4) and (5) are chosen
so that these quantities are eventually positive.

Dynamic fluctuations in the d � 2 Ising model are
measured in Monte Carlo (MC) simulations. The simu-
lated system, L, must be large enough that the mean
domain size, R�tw�, satisfies R�tw� � L at all times, but
small enough not to average out the fluctuations. We used
L � 600 and averaged the results over 2� 103 indepen-
dent initial conditions, the total simulated time being
104 MC steps. Because of computational limitations, we
could only measure ��tw;�t� as the linear integral of (4)
measured along the x and y axes. As seen in Fig. 1, the
observed dynamical fluctuations are similar to those
observed for the foam.

This similarity lies in the common physical mecha-
nism responsible for the slow, heterogeneous dynamics:
the domain growth driven by the reduction of interfacial
energy. As the system coarsens, the size of the regions
that undergo correlated rearrangements increases, so that
the number of independent regions in the probed volume,
N�tw�, decreases, which in turn increases the amplitude of
115701-2



FIG. 2. Exact scaling function of Eq. (7) for the dynamic
susceptibility of the Ising chain. Dashed lines show the asymp-
totic behavior, FC��! 0� � � and FC��! 1� � �	2. Inset:
Exact scaling function of Eq. (6), for � � 10	2, 1 and 10 (from
top to bottom on the left). Dashed lines represent the asymp-
totic behavior estimated via random walk arguments.
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the dynamic fluctuations. One would therefore expect that
�?�tw� � N	1�tw� � Rd�tw�.

To substantiate this prediction, we first consider an
analytically solvable case. We study the nonequilibrium
dynamics of the d � 1 Ising model. The spin chain
evolves according to standard Glauber rules [15]. From
general expressions for two-time, multispin correlation
functions following a quench derived in [16], we compute
exactly the quantities (4) and (5). Although straightfor-
ward in principle, actual calculations require technically
involved algebraic manipulations, detailed in [14].

Consider first equilibrium dynamics which we expect
to be dynamically homogeneous. Indeed, we find that
the correlation (4) vanishes exactly, Ceq�n;�t� �
limtw!1C�n; tw;�t� � 0, for arbitrary distances n, times
�t, and temperatures T > 0. This implies that two-time
multispin correlations factorize into two-spin static cor-
relations, and shows that the correlator (4) is well suited
to revealing the existence of nontrivial, dynamic, out of
equilibrium correlations.

The situation is more interesting in the coarsening
regime. We focus on the scaling behavior for large times
�t; tw ! 1 and distances n! 1, with scaling variables
� � �t=tw and  � n=R�tw� fixed, where R�tw� �

�����
tw

p
.

One finds scale invariance,

C�n; tw;�t� � fC

�
�t
tw
;
n

R�tw�

�
; (6)

where the scaling function fC��; � is given in [14]. From
(6), the susceptibility (5) scales as

��tw;�t� � R�tw�FC

�
�t
tw

�
; (7)

with FC��� �
R
d fC��; �. Both scaling functions are

displayed in Fig. 2. In particular, ��tw;�t� qualitatively
resembles the results in Fig. 1, and Eq. (7) shows that the
peak height scales as expected, �?�tw� � R�tw�.

To develop a more direct understanding of (6), we note
that the dynamics of the Ising spin chain can be mapped
to a diffusion-limited annihilation process, where one
studies the dynamics of the walls separating domains of
opposite magnetization rather than that of the spins
themselves [17]. Trajectories of the walls are random
walks that annihilate whenever they meet. In a space-
time diagram [6], the spins �k�tw�, �l�tw�, �k�t� and �l�t�
occupy the corners of a rectangle of size n � k	 l by
�t � t	 tw, and the spin products in (4) are determined
by the parity of the number of random walks crossing the
relevant edge. Labeling edges in the order of left, right,
top, and bottom, we denote, for example, an odd number
of random walkers crossing the left and bottom edges as
1001. Because walls annihilate in pairs, the number of
walkers crossing the rectangle is even, so that there are
only eight possible situations. In terms of the correspond-
ing probabilities, (4) may be reexpressed asC�n; tw;�t� �
115701-3
8�p0101p1010 � p0110p1001 	 p0000p1111 	 p0011p1100�.
These probabilities can be evaluated to leading order via
standard random walk arguments [14], when the number
of trajectories crossing the rectangle is small, i.e., for
diluted walls, n� R�tw�, and short time delays, �t�
tw. For �t� n2 � tw, C�n; tw;�t� converges to an
n-independent plateau of height �2="2��; see Fig. 2.
When n2 � �t� tw, on the other hand, C�n; tw;�t� �
"	1�1	 2="�n2=tw, implying thatC grows like 2 with a
�t-independent amplitude; see Fig. 2. The random walk
picture becomes too complicated when either n2 or �t are
large compared to tw and we refer to our exact results in
this regime [14]. For n2 � tw � �t, the  2 dependence
found above for n2 � �t� tw persists, but now with an
amplitude that decreases as �	2. For large n2 � tw,
finally, we find a Gaussian cutoff in n with a width of
order

�����
tw

p
for both �t� tw and �t� tw.

The asymptotic behavior of ��tw;�t� follows from the
above discussion. For �t� tw, the integral is dominated
by the plateau region of fC. Since the plateau grows as �,
so does (7). For �t� tw, on the other hand, the decrease
in the amplitude of the  2 part of C controls the variation
of � which decays therefore as �	2. Rigorous analysis
shows indeed FC��! 0� � 4�

���
2

p
	 1�"	3=2� and

FC��! 1� � �8=5��8
���
2

p
	 9�"	3=2�	2; see Fig. 2.

For the d � 2 Ising model and the foam no analytical
results are available. Instead, we test the scaling of
��tw;�t� by measuring R�tw� and the characteristic re-
laxation time. In simulations, R�tw� is determined from
the decay at large distance of the equal-time structure
factor, while the characteristic decay rate scales as 1=tw,
��tw� � t	1

w [8]. In the simulations, � is a linear integral
over distance, as mentioned above. Thus, one expects
�?�tw� � R�tw�. For the foam, R�tw� scales as the bubble
size, which is also proportional to the photon transport
115701-3



FIG. 3. Dynamic scaling of all dynamic susceptibilities in
Fig. 1 (same symbols). Top: experiments on a foam, the line is
the scaling function of Eq. (8). Bottom: numerical simulations
of the d � 2 Ising model.
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mean free path, ‘?�tw� [10], which we obtain indepen-
dently from transmission measurements [9]. We expect
therefore �?�tw� � ‘?3�tw�.

As seen in Fig. 3, not only does the peak of the
dynamic susceptibility scale as expected, but data for
all times collapse onto a master curve, a scaling behavior
analogous to that found for the Ising chain, Eq. (7). For
the foam, the shape of the master curve can be explained
by noting that at all times, cI�tw;�t� � exp�	$�tw��t
,
where $�tw� is a decay rate fluctuating with the number of
rearrangements, of mean ��tw� � h$�tw�iT . To leading
order in the variance of $�tw�, �2�tw� 
 h$�tw�

2iT 	
h$�tw�i

2
T � ‘�3�tw��

2�tw�, one can estimate

��tw;�t� � ‘�3�tw����tw��t

2e	2��tw��t: (8)

The solid line in the top panel of Fig. 3 shows that the
scaling function f�x� � x2 exp�	2x�, suggested by (8), is
in very good agreement with the experimental data.

In summary, we have defined and analyzed dynamic
spatial correlators and susceptibilities revealing the
growth with time of dynamic heterogeneity in coarsening
systems. The increasing dynamical fluctuations are con-
sequences of a reduced number of independent dynamical
domains—bubbles or magnetized domains—as coarsen-
ing proceeds. The nonfractal morphology of the domains
implies a particularly simple scaling of spatial correla-
tors, and therefore of their volume integral, ��tw;�t� �
Rd�tw�f���tw��t
. However, dynamic heterogeneity is
115701-4
also found in systems where dynamic domains are be-
lieved to have a fractal morphology [4,5]. In this case, a
more complicated dynamic scaling can be expected [4,7].
The techniques presented in this work will help identify
and characterize dynamic heterogeneity, an endeavor that
appears as a crucial step in gaining a better understanding
of the dynamic slowing down of many glassy and
jammed materials.
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sions. We acknowledge financial and numerical support
from EPSRC Grants No. 00800822, No. GR/R83712/01,
and No. GR/S54074/01, E.U. Grant No. HPMF-CT-2002-
01927, SNF Grant No. 2100-066920, CNRS (PICS 2410),
French Ministère de la Recherche (ACI Jeunes
Chercheurs), ESF Program SPHINX, Nuffield Grant
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