research

Gas Giant Protoplanets Formed by Disk Instability in Binary Star Systems

Abstract

We present a suite of three dimensional radiative gravitational hydrodynamics models suggesting that binary stars may be quite capable of forming planetary systems similar to our own. The new models with binary companions do not employ any explicit artificial viscosity, and also include the third (vertical) dimension in the hydrodynamic calculations, allowing for transient phases of convective cooling. The calculations of the evolution of initially marginally gravitationally stable disks show that the presence of a binary star companion may actually help to trigger the formation of dense clumps that could become giant planets. We also show that in models without binary companions, which begin their evolution as gravitationally stable disks, the disks evolve to form dense rings, which then break-up into self-gravitating clumps. These latter models suggest that the evolution of any self-gravitating disk with sufficient mass to form gas giant planets is likely to lead to a period of disk instability, even in the absence of a trigger such as a binary star companion.Comment: 52 pages, 28 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 16/02/2019