13 research outputs found

    Fluorine Doping of Layered NaxCoO2 Structure

    Get PDF
    The room temperature Na-ion secondary battery has been under focus lately due to its feasibility to compete against the already well-established Li-ion secondary battery. Transition metal oxides of general formula NaxMO2 have been investigated as potential cathode materials for sodium batteries. Layered NaxCoO2 is synthesized via solid-state method at 900 ºC in air atmosphere. Fluorine doping of the as-prepared powder is established by the use of ammonium hydrogen difluoride (NH4HF2) as a fluorinating agent. The fluorination takes place only at low temperature (200 ºC), while the treatment at higher temperatures (≥ 400 ºC) facilitates the formation of NaF. It is shown that various and controllable amounts of fluorine can be successfully incorporated into the structure. Finally, the effects of fluorine doping on both structural and electrochemical properties are examined

    Fluorine Doping of Layered NaxCoO2 Structure

    Get PDF
    The room temperature Na-ion secondary battery has been under focus lately due to its feasibility to compete against the already well-established Li-ion secondary battery. Transition metal oxides of general formula NaxMO2 have been investigated as potential cathode materials for sodium batteries. Layered NaxCoO2 is synthesized via solid-state method at 900 ºC in air atmosphere. Fluorine doping of the as-prepared powder is established by the use of ammonium hydrogen difluoride (NH4HF2) as a fluorinating agent. The fluorination takes place only at low temperature (200 ºC), while the treatment at higher temperatures (≥ 400 ºC) facilitates the formation of NaF. It is shown that various and controllable amounts of fluorine can be successfully incorporated into the structure. Finally, the effects of fluorine doping on both structural and electrochemical properties are examined

    Li2FeSiO4 cathode material: the structure and electrochemical performances

    Get PDF
    Monoclinic Li2FeSiO4 that crystallizes in P21/n space group was investigated as a potential cathode material for lithium-ion batteries. A combined X-ray diffraction and Mössbauer spectroscopy study was used for the structural investigation. It was found that the crystal structure is prone to an “antisite” defect, the one in which the Fe ion and the Li ion exchange places. This finding was also confirmed by the Mössbauer spectroscopy. In order to obtain composites of Li2FeSiO4 and carbon, several synthesis techniques that use different carbon sources were involved. Electrochemical performances were investigated through galvanostatic charge/discharge tests. Discharge curve profile did not reflect a two-phase intercalation reaction (no obvious voltage plateau) due to the low conductivity at room temperature

    Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy

    Get PDF
    A composite powder Li2FeSiO4/C is synthesized through a solid state reaction at 750 °C. The Rietveld crystal structure refinement is done in the monoclinic P21/n space group. It is found that the crystal structure is prone to “antisite” defect where small part of iron ion occupies exclusively Li(2) crystallographic position, of two different lithium tetrahedral positions (Li(1) and Li(2)). This finding is also confirmed by Mössbauer spectroscopy study: the sextet evidenced in the Mössbauer spectrum is assigned to the iron ions positioned at the Li(2) sites. A bond-valence energy landscape calculation is used to predict the conduction pathways of lithium ions. The calculations suggest that Li conductivity is two-dimensional in the (101) plane. Upon galvanostatic cyclings the structure starts to rearrange to inverse βII polymorph

    Three-dimensional inversion of magnetotelluric impedance tensor data and full distortion matrix.

    Get PDF
    Galvanic distortion of magnetotelluric (MT) data due to small-scale surficial bodies or due to topography is one of the major factors that prevents accurate imaging of the subsurface. We present a three-dimensional algorithm for joint inversion of MT impedance tensor data and a frequency-independent full distortion matrix that circumvents this problem. We perform several tests of our algorithm on synthetic data affected by different amounts of distortion. These tests show that joint inversion leads to a better conductivity model compared to the inversion of the MT impedance tensor without any correction for distortion effects. For highly distorted data, inversion without any distortion correction results in strong artefacts and we cannot fit the data to the specified noise level. When the distortion is reduced, we can fit the data to an RMS of one, but still observe artefacts in the shallow part of the model. In contrast, in both cases our joint inversion can fit the data within the assumed noise and the resulting models are comparable to the inversion of undistorted data. In addition, we show that the elements of the full distortion matrix can be well resolved by our algorithm. Finally, when inverting undistorted data, including the distortion matrix in the inversion only results in a minor loss of resolution. We therefore consider our new approach a promising tool for the general analysis of real field data

    Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics

    No full text
    Abstract The immense potential of lead-free dielectric capacitors in advanced electronic components and cutting-edge pulsed power systems has driven enormous investigations and evolutions heretofore. One of the significant challenges in lead-free dielectric ceramics for energy-storage applications is to optimize their comprehensive characteristics synergistically. Herein, guided by phase-field simulations along with rational composition-structure design, we conceive and fabricate lead-free Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-Sr(Sc0.5Nb0.5)O3 ternary solid-solution ceramics to establish an equitable system considering energy-storage performance, working temperature performance, and structural evolution. A giant W rec of 9.22 J cm−3 and an ultra-high ƞ ~ 96.3% are realized in the BNKT-20SSN ceramic by the adopted repeated rolling processing method. The state-of-the-art temperature (W rec ≈ 8.46 ± 0.35 J cm−3, ƞ ≈ 96.4 ± 1.4%, 25–160 °C) and frequency stability performances at 500 kV cm−1 are simultaneously achieved. This work demonstrates remarkable advances in the overall energy storage performance of lead-free bulk ceramics and inspires further attempts to achieve high-temperature energy storage properties

    Insight Into Disorder, Stress and Strain of Radiation Damaged Pyrochlores: A Possible Mechanism for the Appearance of Defect Fluorite

    No full text
    We have examined the irradiation response of a titanate and zirconate pyrochlore—both of which are well studied in the literature individually—in an attempt to define the appearance of defect fluorite in zirconate pyrochlores. To our knowledge this study is unique in that it attempts to discover the mechanism of formation by a comparison of the different systems exposed to the same conditions and then examined via a range of techniques that cover a wide length scale. The conditions of approximately 1 displacement per atom via He2+ ions were used to simulate long term waste storage conditions as outlined by previous results from Ewing in a large enough sample volume to allow for neutron diffraction, as not attempted previously. The titanate sample, used as a baseline comparison since it readily becomes amorphous under these conditions behaved as expected. In contrast, the zirconate sample accumulates tensile stress in the absence of detectable strain. We propose this is analogous to the lanthanide zirconate pyrochlores examined by Simeone et al. where they reported the appearance of defect fluorite diffraction patterns due to a reduction in grain size. Radiation damage and stress results in the grains breaking into even smaller crystallites, thus creating even smaller coherent diffraction domains. An (ErNd)2(ZrTi)2O7 pyrochlore was synthesized to examine which mechanism might dominate, amorphization or stress/strain build up. Although strain was detected in the pristine sample via Synchrotron X-ray diffraction it was not of sufficient quality to perform a full analysis on

    Anion Disorder in Lanthanoid Zirconates Gd<sub>2–<i>x</i></sub>Tb<sub><i>x</i></sub>Zr<sub>2</sub>O<sub>7</sub>

    No full text
    The pyrochlore–defect fluorite order–disorder transition has been studied for a series of oxides of the type Gd<sub>2–<i>x</i></sub>Tb<sub><i>x</i></sub>Zr<sub>2</sub>O<sub>7</sub> by a combination of diffraction and spectroscopy techniques. Synchrotron X-ray diffraction data suggest an abrupt transition from the coexistence of pyrochlore and defect fluorite phases to a single defect fluorite phase with increasing Tb content. However neutron diffraction data, obtained at λ ≈ 0.497 Å for all Gd-containing samples to minimize absorption, not only provide evidence for independent ordering of the anion and cation sublattices but also suggest that the disorder transition across the pyrochlore–defect fluorite boundary of Ln<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> is rather gradual. Such disorder was also evident in X-ray absorption measurements at the Zr L<sub>3</sub>-edge, which showed a gradual increase in the effective coordination number of the Zr from near 6-coordinate in the pyrochlore rich samples to near 7-coordinate in the Tb rich defect fluorites. These results indicate the presence of ordered domains throughout the defect fluorite region, and demonstrate the gradual nature of the order–disorder transition across the Gd<sub>2–<i>x</i></sub>Tb<sub><i>x</i></sub>Zr<sub>2</sub>O<sub>7</sub> series
    corecore