86 research outputs found

    Endoplasmic Reticulum Stress: At the Crossroads of Inflammation and Metabolism in Hepatocellular Carcinoma Development

    Get PDF
    Steatohepatitis is a cause of hepatocellular carcinoma development; however, the underlying mechanisms are poorly defined. In this issue of Cancer Cell, Nakagawa and colleagues demonstrate that activation of endoplasmic reticulum stress signaling is instrumental in the development of steatohepatitis and synergizes with proinflammatory pathways to promote hepatocarcinogenesis

    Interfacial toughness evolution under thermal cycling by laser shock and mechanical testing of an EB-PVD coating system

    Get PDF
    One of the major challenges for coatings on superalloys is to keep adherence during aging, where damage is mostly driven by thermal cycling. On the other hand, the methodology of the evaluation of the interfacial toughness should be consistent with in service loading. Recently, the use of LAser Shock Adhesion Test (LASAT) has shown its capability for both ranking different coating solutions and evaluating the evolution of a given coating as a function of aging [1-2]. The intent of this paper is to demonstrate the ability of LASAT to reproduce damage mechanisms observed under quasi-static in plane mechanical testing and to propose a general methodology to assess interfacial toughness evolution based on LASAT measurements. The material chosen in this study is a partially Y2O3 stabilized EB-PVD zirconia layer coating deposited by Electron Beam – Physical Vapor Deposition (EB-PVD) onto a first generation Ni base superalloy. Aging has been performed using thermal cycling under laboratory air. Degradation of the coating system due to ageing is quantitatively assessed by LASAT and accompanied by different microstructural analysis methods. For LASAT, if laser flux is below a threshold, no delamination occurs. When increasing laser flux above this threshold, a systematic sequence is observed: i) delamination without buckling of the ceramic layer, ii) delamination and buckling, iii) partial cracking of the ceramic layer, and iv) spallation [1-2]. These different states are also achieved in compressive quasi-static testing and assessed by means of local strain measurement using digital image correlation technique [3]. Aging is evaluated through the evolution of both the delamination and the buckling behavior induced by the LASAT method or critical strain at ceramic spallation under compressive static load. Please click Additional Files below to see the full abstract

    Les microARNs régulateurs de l'expression génique du Glypican-3 dans le Carcinome Hépatocellulaire

    Get PDF
    Le Glypican-3 (GPC3) est surexprimé dans 72% des carcinomes hépatocellulaire (CHC). C est un co-récepteur membranaire du récepteur WNT, qui appartient à la famille des protéoglycanes à sulfates d'héparane. L'objectif général de ma thèse vise à étudier les mécanismes de régulation post-transcriptionnelle de l expression du GPC3 dans le CHC. Pour cela, j ai développé un test fonctionnel qui m a permis de cribler une bibliothèque de 876 microARNs humains. Ceci a conduit à l identification de 5 microARNs régulateurs de l expression de l ARNm codant pour le GPC3 via sa région 3 non traduite (NT). Mon travail de thèse porte plus particulièrement sur le miR-1271 et le miR-1291 car ils sont dérégulés dans le CHC et sont respectivement inhibiteur et inducteur de l expression du GPC3. Dans un premier projet, j ai démontré que le miR-1271 cible directement la région 3 NT du GPC3 et diminue la stabilité de son ARNm. Ce microARN est sous-exprimé dans le CHC et son expression corrèle négativement avec celle de l'ARNm du GPC3 dans les CHC associés à une infection par le virus de l hépatite B. Dans un deuxième projet, j ai démontré que le miR-1291 régule positivement l expression du GPC3 en inhibant un facteur intermédiaire. Une analyse in silico a permis d identifier IRE1a comme candidat. IRE1a est une protéine transmembranaire du réticulum endoplasmique (RE) qui participe à l Unfolded Protein Response , une réponse adaptative activée lors de l accumulation de protéines mal conformées dans le RE. J ai démontré qu IRE1a clive l ARNm codant pour le GPC3 grâce à son activité endoribonucléase. D autre part, le miR-1291 cible directement l ARNm codant pour IRE1a dans sa région 5 NT ce qui inhibe son expression et induit une surexpression du GPC3. Le miR-1291 est surexprimé dans le CHC et son expression corrèle positivement avec celle de l ARNm du GPC3. En conclusion, mon travail de thèse m a permis de mettre en évidence et de caractériser deux nouveaux microARNs (miR-1271 et miR-1291) contrôlant l expression du GPC3 par des mécanismes directs ou indirects. La pertinence physiopathologique de ces régulations dans le CHC est en accord avec les niveaux d expression respectifs de ces microARNs, qui pourraient contribuer à la surexpression du GPC3 dans ces tumeurs.Glypican-3 (GPC3) is overexpressed in 72% of hepatocellular carcinoma (HCC). It is a co-receptor for WNT receptor and belongs to the heparan sulfate proteoglycans family. The general objective of my PhD thesis was to study the mechanisms by which GPC3 is post-transcriptionnally regulated in HCC. To this end, I developed a functional test that allowed me to screen a library of 876 human microRNAs. This led me to identify 5 microRNAs that regulate the expression of GPC3 mRNA through its 3 Untranslated Region (UTR). The work presented in this thesis particulary focuses on miR-1271 and miR-1291 as both microRNAs present a deregulated expression in HCC and are respectively inhibitor and activator of GPC3 mRNA expression. In a first project, I demonstrated that miR-1271 directly binds to GPC3 mRNA 3 UTR and affects its stability. This microRNA is underexpressed in HCC and its expression negatively correlates with that of GPC3 mRNA in a subgroup of HCC corresponding to those associated with hepatitis B virus infection. In a second project, I demonstrated that miR-1291 postively regulates the expression of GPC3 mRNA by targeting an intermediate factor. An in silico analysis led to the identification of the Inositol Requiring Enzyme 1 alpha (IRE1a) as a potential candidate. IRE1a is an endoplasmic reticulum (ER) resident type I transmembrane protein and contributes to the signaling of the Unfolded Protein Response (UPR). The UPR is an adaptive response activated upon accumulation of improperly folded proteins in the ER. I showed that IRE1a cleaves GPC3 mRNA through its endoribonuclease activity. Moreover I demonstrated that miR-1291 directly targets IRE1a mRNA through its 5 UTR, thereby decreasing its expression and contributing to GPC3 mRNA overexpression. MiR-1291 is overexpressed in HCC and its expression positively correlates with that of GPC3 mRNA. In summary, the work carried out during my PhD allowed the identification and the characterization of two new microRNAs (miR-1271 and miR-1291) that control the expression of GPC3 mRNA through direct or indirect mechanisms. The pathophysiological relevance of these regulatory mechanisms is in agreement with the respective expression levels of these microRNAs in HCC, which could therefore contribute to the overexpression of GPC3 in those tumors.BORDEAUX2-Bib. électronique (335229905) / SudocSudocFranceF

    Crack morphology in a columnar thermal barrier coating system

    Get PDF
    For high temperature application, EB-PVD ceramic layers are commonly used as thermal barrier coating. During thermal transients, the thermal expansion mismatch between coating and substrate drives failure of the TBC mainly by interfacial cracking. Laser Shock Adhesion Test (LASAT) provides stresses at the ceramic/metal interface enabling controlled interfacial cracking [1-2]. For achieving a clear understanding of the influence of local morphology on interfacial toughness, this study aims at characterizing the 3D morphology of a crack at the interface between metal and an EB-PVD TBC having a columnar structure. Please click Additional Files below to see the full abstract

    CT scan screening is associated with increased distress among subjects of the APExS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to assess the psychological consequences of HRCT scan screening in retired asbestos-exposed workers.</p> <p>Methods</p> <p>A HRCT-scan screening program for asbestos-related diseases was carried out in four regions of France. At baseline (T1), subjects filled in self-administered occupational questionnaires. In two of the regions, subjects also received a validated psychological scale, namely the psychological consequences questionnaire (PCQ). The physician was required to provide the subject with the results of the HRCT scan at a final visit. A second assessment of psychological consequences was performed 6 months after the HRCT-scan examination (T2). PCQ scores were compared quantitatively (t-test, general linear model) and qualitatively (chi²-test, logistic regression) to screening results. Multivariate analyses were adjusted for gender, age, smoking, asbestos exposure and counseling.</p> <p>Results</p> <p>Among the 832 subjects included in this psychological impact study, HRCT-scan screening was associated with a significant increase of the psychological score 6 months after the examination relative to baseline values (8.31 to 10.08, p < 0.0001, t-test). This increase concerned patients with an abnormal HRCT-scan result, regardless of the abnormalities, but also patients with normal HRCT-scans after adjustment for age, gender, smoking status, asbestos exposure and counseling visit. The greatest increase was observed for pleural plaques (+3.60; 95%CI [+2.15;+5.06]), which are benign lesions. Detection of isolated pulmonary nodules was also associated with a less marked but nevertheless significant increase of distress (+1.88; 95%CI [+0.34;+3.42]). However, analyses based on logistic regressions only showed a close to significant increase of the proportion of subjects with abnormal PCQ scores at T2 for patients with asbestosis (OR = 1.92; 95%CI [0.97-3.81]) or with two or more diseases (OR = 2.04; 95%CI [0.95-4.37]).</p> <p>Conclusion</p> <p>This study suggests that HRCT-scan screening may be associated with increased distress in asbestos-exposed subjects. If confirmed, these results may have consequences for HRCT-scan screening recommendations.</p

    Molecular basis of differential target regulation by miR-96 and miR-182: the Glypican-3 as a model

    Get PDF
    Besides the fact that miR-96 and miR-182 belong to the miR-182/183 cluster, their seed region (UUGGCA, nucleotides 2–7) is identical suggesting potential common properties in mRNA target recognition and cellular functions. Here, we used the mRNA encoding Glypican-3, a heparan-sulfate proteoglycan, as a model target as its short 3′ untranslated region is predicted to contain one miR-96/182 site, and assessed whether it is post-transcriptionally regulated by these two microRNAs. We found that miR-96 downregulated GPC3 expression by targeting its mRNA 3′-untranslated region and interacting with the predicted site. This downregulatory effect was due to an increased mRNA degradation and depended on Argonaute-2. Despite its seed similarity with miR-96, miR-182 was unable to regulate GPC3. This differential regulation was confirmed on two other targets, FOXO1 and FN1. By site-directed mutagenesis, we demonstrated that the miRNA nucleotide 8, immediately downstream the UUGGCA seed, plays a critical role in target recognition by miR-96 and miR-182. Our data suggest that because of a base difference at miRNA position 8, these two microRNAs control a completely different set of genes and therefore are functionally independent

    Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation

    Get PDF
    International audienceAnterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses

    Illuminating the life of GPCRs

    Get PDF
    The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented

    A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment

    Get PDF
    This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5- HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5- HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in theGPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5- HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain
    corecore