5 research outputs found

    Data standardization of plant-pollinator interactions

    Get PDF
    Background Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. Results Here we present a vocabulary of terms and a data model for sharing plant–pollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plant–pollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plant–pollinator interactions. Conclusions The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plant–pollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plant–pollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of terms

    WorldFAIR (D10.2) Agricultural Biodiversity Standards, Best Practices and Guidelines Recommendations

    Get PDF
    The WorldFAIR Case Study on Agricultural Biodiversity (WP10) addresses the challenges of advancing interoperability and mobilising plant-pollinator interactions data for reuse. Previous efforts, reported in Deliverable 10.1 - from our discovery phase - provided an overview of projects, best practices, tools, and examples for creating, managing and sharing data related to plant-pollinator interactions, along with a work plan for conducting pilot studies. The current report presents the results from the pilot phase of the Case Study, which involved six pilot studies adopting standards and recommendations from the discovery phase. The pilots enabled the handling  of concrete examples and the generation of reusable materials tailored to this domain, as well as providing better estimates for the overall costs of adoption for future projects. Our approach for plant-pollinator data standardisation is based on the widely-used standard for representing biodiversity data, Darwin Core, developed and maintained by the Biodiversity Information Standards (TDWG), in conjunction with a data model and vocabulary proposed by the Brazilian Network of Plant-Pollinator Interactions (REBIPP). The pilot studies also underwent a process of “FAIRification” (i.e., transforming data into a format that adheres to the FAIR data principles) using the Global Biotic Interactions (GloBI, Poelen et al. 2014) platform. Additionally, we present the publishing model for Biotic Interactions developed in collaboration with the Global Biodiversity Information Facility (GBIF), which leads the WorldFAIR Case Study on Biodiversity, as part of the proposed GBIF New Data Model, along with a concrete example of its use by one of the pilots. This effort led to the development of ‘FAIR best practices’ guidelines for sharing plant-pollinator interaction data. The primary focus of this work is to enhance the interoperability of data on plant-pollinator interactions, aligning with WorldFAIR efforts  to develop a Cross-Domain Interoperability Framework. We have successfully promoted the adoption of standards and increased the interoperability of plant-pollinator interactions data, resulting in a process that allows for tracing the provenance of the data, as well as facilitating the reuse of datasets crucial for understanding this essential ecosystem service and its changes due to human impact. Our effort demonstrates there are several possible paths for FAIRification, tailored to institutional needs, and we have shown that different approaches can contribute to promoting data interoperability and data availability for reuse, which is the ultimate goal of this initiative. Consequently, we have successfully ensured FAIR data for understanding plant-pollinator interactions at biologically-relevant scales for crops, with broad participation from initiatives in Europe, South America, Africa, North America, and elsewhere. We have also established concrete guidelines on FAIR data best practices customised for pollination data, metadata, and other digital objects, promoting the scalable adoption of these standards and FAIR data best practices by multiple initiatives. We believe this effort can assist similar initiatives in adopting interoperability standards for this domain and contribute to our understanding of how plant-pollinator interactions contribute to sustain life on Earth. Visit WorldFAIR online at http://worldfair-project.eu. WorldFAIR is funded by the EC HORIZON-WIDERA-2021-ERA-01-41 Coordination and Support Action under Grant Agreement No. 101058393. 

    A social and ecological assessment of tropical land uses at multiple scales:the Sustainable Amazon Network

    Get PDF
    Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network (Rede Amazonia Sustentavel, RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far
    corecore