163 research outputs found

    Automated Performance Assessment in Transoesophageal Echocardiography with Convolutional Neural Networks

    Get PDF
    Transoesophageal echocardiography (TEE) is a valuable diagnostic and monitoring imaging modality. Proper image acquisition is essential for diagnosis, yet current assessment techniques are solely based on manual expert review. This paper presents a supervised deep learning framework for automatically evaluating and grading the quality of TEE images. To obtain the necessary dataset, 38 participants of varied experience performed TEE exams with a high-fidelity virtual reality (VR) platform. Two Convolutional Neural Network (CNN) architectures, AlexNet and VGG, structured to perform regression, were finetuned and validated on manually graded images from three evaluators. Two different scoring strategies, a criteria-based percentage and an overall general impression, were used. The developed CNN models estimate the average score with a root mean square accuracy ranging between 84% − 93%, indicating the ability to replicate expert valuation. Proposed strategies for automated TEE assessment can have a significant impact on the training process of new TEE operators, providing direct feedback and facilitating the development of the necessary dexterous skills

    Mechanical Discordance between Left Atrium and Left Atrial Appendage

    Get PDF
    During standard transesophageal echocardiographic examinations in sinus rhythm (SR) patients, the left atrial appendage (LAA) is not routinely assessed with Doppler. Despite having a SR, it is still possible to have irregular activity in the LAA. This situation is even more important for SR patients where assessment of the left atrium is often foregone. We describe a case where we encountered this situation and briefly review how to assess the left atrium and its appendage in such a case scenario

    Evaluation of the quality of transesophageal echocardiography images and verification of proficiency

    Get PDF
    Various metrics have been used in curriculum-based transesophageal echocardiography (TEE) training programs to evaluate acquisition of proficiency. However, the quality of task completion, that is the final image quality, was subjectively evaluated in these studies. Ideally, the endpoint metric should be an objective comparison of the trainee-acquired image with a reference ideal image. Therefore, we developed a simulator-based methodology of preclinical verification of proficiency (VOP) in trainees by tracking objective evaluation of the final acquired images. We utilized geometric data from the simulator probes to compare image acquisition of anesthesia residents who participated in our structured longitudinal simulator-based TEE educational program vs ideal image planes determined from a panel of experts. Thirty-three participants completed the study (15 experts, 7 postgraduate year (PGY)-1 and 11 PGY-4). The results of our study demonstrated a significant difference in image capture success rates between learners and experts (χ2 = 14.716, df = 2, P < 0.001) with the difference between learners (PGY-1 and PGY-4) not being statistically significant (χ2 = 0, df = 1, P = 1.000). Therefore, our results suggest that novices (i.e. PGY-1 residents) are capable of attaining a level of proficiency comparable to those with modest training (i.e. PGY-4 residents) after completion of a simulation-based training curriculum. However, professionals with years of clinical training (i.e. attending physicians) exhibit a superior mastery of such skills. It is hence feasible to develop a simulator-based VOP program in performance of TEE for junior anesthesia residents

    Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection

    Full text link

    Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart

    Get PDF
    Ischaemic heart disease and the heart failure that often results, remain the leading causes of death and disability in Europe and worldwide. As such, in order to prevent heart failure and improve clinical outcomes in patients presenting with an acute ST-segment elevation myocardial infarction and patients undergoing coronary artery bypass graft surgery, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury. During the last three decades, a wide variety of ischaemic conditioning strategies and pharmacological treatments have been tested in the clinic - however, their translation from experimental to clinical studies for improving patient outcomes has been both challenging and disappointing. Therefore, in this Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart, we critically analyse the current state of ischaemic conditioning in both the experimental and clinical settings, provide recommendations for improving its translation into the clinical setting, and highlight novel therapeutic targets and new treatment strategies for reducing acute myocardial ischaemia/reperfusion injury
    corecore