929 research outputs found

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Improved Limits on B0B^{0} decays to invisible (+γ)(+\gamma) final states

    Get PDF
    We establish improved upper limits on branching fractions for B0 decays to final States 10 where the decay products are purely invisible (i.e., no observable final state particles) and for final states where the only visible product is a photon. Within the Standard Model, these decays have branching fractions that are below the current experimental sensitivity, but various models of physics beyond the Standard Model predict significant contributions for these channels. Using 471 million BB pairs collected at the Y(4S) resonance by the BABAR experiment at the PEP-II e+e- storage ring at the SLAC National Accelerator Laboratory, we establish upper limits at the 90% confidence level of 2.4x10^-5 for the branching fraction of B0-->Invisible and 1.7x10^-5 for the branching fraction of B0-->Invisible+gammaComment: 8 pages, 3 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Study of muons near shower cores at sea level using the E594 neutrino detector

    Get PDF
    The E594 neutrino detector has been used to study the lateral distribution of muons of energy 3 GeV near shower cores. The detector consists of a 340 ton fine grain calorimeter with 400,000 cells of flash chamber and dimensions of 3.7 m x 20 m x 3.7 m (height). The average density in the calorimeter is 1.4 gm/sq cm, and the average Z is 21. The detector was triggered by four 0.6 sq m scintillators placed immediately on the top of the calorimeter. The trigger required at least two of these four counters. The accompanying extensive air showers (EAS) was sampled by 14 scintillation counters located up to 15 m from the calorimeter. Several off line cuts have been applied to the data. Demanding five particles in at least two of the trigger detectors, a total of 20 particles in all of them together, and an arrival angle for the shower 450 deg reduced the data sample to 11053 events. Of these in 4869 cases, a computer algorithm found at least three muons in the calorimeter

    The composition of cosmic rays near the Bend (10 to the 15th power eV) from a study of muons in air showers at sea level

    Get PDF
    The distribution of muons near shower cores was studied at sea level at Fermilab using the E594 neutrino detector to sample the muon with E testing 3 GeV. These data are compared with detailed Monte Carlo simulations to derive conclusions about the composition of cosmic rays near the bend in the all particle spectrum. Monte Carlo simulations generating extensive air showers (EAS) with primary energy in excess of 50 TeV are described. Each shower record contains details of the electron lateral distribution and the muon and hadron lateral distributions as a function of energy, at the observation level of 100g/cm. The number of detected electrons and muons in each case was determined by a Poisson fluctuation of the number incident. The resultant predicted distribution of muons, electrons, the rate events are compared to those observed. Preliminary results on the rate favor a heavy primary dominated cosmic ray spectrum in energy range 50 to 1000 TeV

    Performance data of US Naval Observatory VLG-11 hydrogen masers since September, 1983

    Get PDF
    In 1983, two VLC-11 masers were delivered to the U.S. Naval Observatory by the Smithsonian Astrophysical Observatory. Last year the short-term stability of these masers was reported and the effect of this short-term stability on timekeeping performance was examined. Since the date of installation, 13 September 1983, data on the masers' long-term performance have been accumulated. The Allan variance, agma(tau), of the relative frequency between the masers reaches a minimum of about 4 parts in 10 to the 16th power at averaging times 5,000 seconds and rises at longer averaging times due, at least partly, to systematic frequency drift. The systematic frequency drifts, expressed in units of fractional frequency difference per day are discussed

    A measurement of AFBbA^b_{FB} in lifetime tagged heavy flavour Z decays

    Get PDF

    Exclusive Measurements of b -> s gamma Transition Rate and Photon Energy Spectrum

    Get PDF
    We use 429 fb1^{-1} of e+ee^+e^- collision data collected at the Υ(4S)\Upsilon(4S) resonance with the BABAR detector to measure the radiative transition rate of bsγb\rightarrow s\gamma with a sum of 38 exclusive final states. The inclusive branching fraction with a minimum photon energy of 1.9 GeV is found to be B(BˉXsγ)=(3.29±0.19±0.48)×104\mathcal{B}(\bar B \rightarrow X_{s}\gamma)=(3.29\pm 0.19\pm 0.48)\times 10^{-4} where the first uncertainty is statistical and the second is systematic. We also measure the first and second moments of the photon energy spectrum and extract the best fit values for the heavy-quark parameters, mbm_{b} and μπ2\mu_{\pi}^{2}, in the kinetic and shape function models.Comment: 18 pages, 14 pdf figures, submitted to Phys. Rev.

    Techno-economic analysis of chemical looping combustion with humid air turbine power cycle

    Get PDF
    Power generation from fossil fuel-fired power plant is the largest single source of CO₂ emission. CO₂ emission contributes to climate change. On the other hand, renewable energy is hindered by complex constraints in dealing with large scale application and high price. Power generation from fossil fuels with CO₂ capture is therefore necessary to meet the increasing energy demand, and reduce the emission of CO₂. This paper presents a process simulation and economic analysis of the chemical looping combustion (CLC) integrated with humid air turbine (HAT) cycle for natural gas-fired power plant with CO₂ capture. The study shows that the CLC–HAT including CO₂ capture has a thermal efficiency of 57% at oxidizing temperature of 1200 °C and reducer inlet temperature of 530 °C. The economic evaluation shows that the 50 MWth plant with a projected lifetime of 30 years will have a payback period of 7 years and 6 years for conventional HAT and CLC–HAT cycles respectively. The analysis indicates that CLC–HAT process has a high potential to be commercialised

    Search for particles with unexpected mass and charge in Z decays

    Get PDF

    Update of electroweak parameters from Z decays

    Get PDF
    corecore