59 research outputs found

    CD55 Deficiency Protects against Atherosclerosis in ApoE-Deficient Mice via C3a Modulation of Lipid Metabolism

    Get PDF
    Atherosclerosis, the leading cause of death in the Western world, is driven by chronic inflammation within the artery wall. Elements of the complement cascade are implicated in the pathogenesis, because complement proteins and their activation products are found in the atherosclerotic plaque. We examined the role of CD55, a membrane inhibitor of the complement component 3 (C3) convertase, which converts C3 into C3a and C3b, in atherosclerosis. CD55-deficient (CD55−/−) mice were crossed onto the atherosclerosis-prone apolipoprotein E (apoE)-deficient (apoE−/−) background. High fat–fed male apoE−/−/CD55−/− mice were strongly protected from developing atherosclerosis compared with apoE−/− controls. Lipid profiling showed significantly lower levels of triglycerides, nonesterified fatty acids, and cholesterol in apoE−/−/CD55−/− mice than that in controls after high-fat feeding, whereas body fat in apoE−/−/CD55−/− mice content was increased. Plasma levels of C3 fell, whereas concentrations of C3adesArg (alias acylation stimulating protein; ASP), produced by serum carboxypeptidase N–mediated desargination of C3a, increased in nonfasted high fat–fed apoE−/−/CD55−/− mice, indicating complement activation. Thus, complement dysregulation in the absence of CD55 provoked increased C3adesArg production that, in turn, caused altered lipid handling, resulting in atheroprotection and increased adiposity. Interventions that target complement activation in adipose tissue should be explored as lipid-decreasing strategies

    Postoperative outcomes in oesophagectomy with trainee involvement

    Get PDF
    BACKGROUND: The complexity of oesophageal surgery and the significant risk of morbidity necessitates that oesophagectomy is predominantly performed by a consultant surgeon, or a senior trainee under their supervision. The aim of this study was to determine the impact of trainee involvement in oesophagectomy on postoperative outcomes in an international multicentre setting. METHODS: Data from the multicentre Oesophago-Gastric Anastomosis Study Group (OGAA) cohort study were analysed, which comprised prospectively collected data from patients undergoing oesophagectomy for oesophageal cancer between April 2018 and December 2018. Procedures were grouped by the level of trainee involvement, and univariable and multivariable analyses were performed to compare patient outcomes across groups. RESULTS: Of 2232 oesophagectomies from 137 centres in 41 countries, trainees were involved in 29.1 per cent of them (n = 650), performing only the abdominal phase in 230, only the chest and/or neck phases in 130, and all phases in 315 procedures. For procedures with a chest anastomosis, those with trainee involvement had similar 90-day mortality, complication and reoperation rates to consultant-performed oesophagectomies (P = 0.451, P = 0.318, and P = 0.382, respectively), while anastomotic leak rates were significantly lower in the trainee groups (P = 0.030). Procedures with a neck anastomosis had equivalent complication, anastomotic leak, and reoperation rates (P = 0.150, P = 0.430, and P = 0.632, respectively) in trainee-involved versus consultant-performed oesophagectomies, with significantly lower 90-day mortality in the trainee groups (P = 0.005). CONCLUSION: Trainee involvement was not found to be associated with significantly inferior postoperative outcomes for selected patients undergoing oesophagectomy. The results support continued supervised trainee involvement in oesophageal cancer surgery

    Flow regulates arterial-venous differentiation in the chick embryo yolk sac

    No full text
    Formation of the yolk sac vascular system and its connection to the embryonic circulation is crucial for embryo survival in both mammals and birds. Most mice with mutations in genes involved in vascular development die because of a failure to establish this circulatory loop. Surprisingly, formation of yolk sac arteries and veins has not been well described in the recent literature. Using time-lapse video-microscopy, we have studied arterial-venous differentiation in the yolk sac of chick embryos. Immediately after the onset of perfusion, the yolk sac exhibits a posterior arterial and an anterior venous pole, which are connected to each other by cis-cis endothelial interactions. To form the paired and interlaced arterial-venous pattern characteristic of mature yolk sac vessels, small caliber vessels of the arterial domain are selectively disconnected from the growing arterial tree and subsequently reconnected to the venous system, implying that endothelial plasticity is needed to fashion normal growth of veins. Arterial-venous differentiation and patterning are controlled by hemodynamic forces, as shown by flow manipulation and in situ hybridization with arterial markers ephrinB2 and neuropilin 1, which show that expression of both mRNAs is not genetically determined but plastic and regulated by flow. In vivo application of ephrinB2 or EphB4 in the developing yolk sac failed to produce any morphological effects. By contrast, ephrinB2 and EphB4 application in the allantois of older embryos resulted in the rapid formation of arterial-venous shunts. In conclusion, we show that flow shapes the global patterning of the arterial tree and regulates the activation of the arterial markers ephrinB2 and neuropilin 1

    The anti-coagulants ASIS or APC do not protect against renal ischemia/ reperfusion injury

    No full text
    Renal ischemia/reperfusion (I/R) injury is the main cause of acute renal failure. The severity of injury is determined by endothelial damage as well as inflammatory and apoptotic processes. The anti-coagulants active site inhibited factor VIIa (ASIS) and activated protein C (APC) are besides their anti-coagulant function also known for their cytoprotective properties. In this study the effect of ASIS and APC was assessed on renal I/R injury and this in relation to inflammation and apoptosis. Our results showed no effect of ASIS or APC on renal injury as determined by histopathological scoring as well as by BUN and creatinin levels. Furthermore, no effect on fibrin staining was detected but ASIS did reduce TF activity levels after a 2 hrs reperfusion period. Neither ASIS nor APC administration influenced overall inflammation markers, although some inflammatory effects of ASIS on interleukin (IL)-1β and tumor necrosis factor (TNF)-α were detectable after 2 hrs of reperfusion. Finally, neither APC nor ASIS had an influence on cell signaling pathways or on the number of apoptotic cells within the kidneys. From this study we can conclude that the anti-coagulants ASIS and APC do not have protective effects in renal I/R injury in the experimental setup as used in this study which is in contrast to the protective effects of these anti-coagulants in other models of I/R

    Anthropogenic and natural constituents in particulate matter in the Netherlands

    No full text
    To develop mitigation strategies for reducing concentrations of both PM2.5 and PM10, the origin of particulate matter (PM) needs to be established. An intensive, one-year measurement campaign from August 2007 to August 2008 was carried out to determine the composition of PM10 and PM2.5 at five locations in the Netherlands, aiming at reducing the uncertainties on the origin of PM. Generally, a considerable conformity in the chemical composition of PM2.5 (and PM10) is observed. From all constituents present in PM2.5, the secondary inorganic aerosol is the most dominant (42–48%), followed by the total carbonaceous matter (22–37%). Contributions from sea salt (maximum 8%), mineral dust and metals (maximum 5%) are relatively low. For the first time, a detailed overview of the composition of the coarse fraction can be presented. Compared to the fine fraction, contributions of sea salt, mineral dust and metals are larger resulting in a more balanced distribution between the various constituents. Through mass closure a considerable part of the PM mass could be defined (PM2.5: 80–94%). The chemical distribution on days with high PM levels shows a distinct increase in nitrate as well as in the unaccounted mass. Contributions of the other constituents remain equal or are lower (sea salt) when expressed in percentages. A correspondence between nitrate and the unaccounted mass is observed hinting at the presence of water on the filters. The contribution from natural sources in the Netherlands (at a rural station) was estimated to be 19 to 24% for PM10 and 13 to 17% for PM2.5
    • …
    corecore