19 research outputs found

    The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition.

    Get PDF
    Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24-Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity

    Complete Sequences of Multiple-Drug Resistant IncHI2 ST3 Plasmids in Escherichia coli of Porcine Origin in Australia

    Get PDF
    IncHI2 ST3 plasmids are known carriers of multiple antimicrobial resistance genes. Complete plasmid sequences from multiple drug resistant Escherichia coli circulating in Australian swine is however limited. Here we sequenced two related IncHI2 ST3 plasmids, pSDE-SvHI2, and pSDC-F2_12BHI2, from phylogenetically unrelated multiple-drug resistant Escherichia coli strains SvETEC (CC23:O157:H19) and F2_12B (ST93:O7:H4) from geographically disparate pig production operations in New South Wales, Australia. Unicycler was used to co-assemble short read (Illumina) and long read (PacBio SMRT) nucleotide sequence data. The plasmids encoded three drug-resistance loci, two of which carried class 1 integrons. One integron, hosting drfA12-orfF-aadA2, was within a hybrid Tn1721/Tn21, with the second residing within a copper/silver resistance transposon, comprising part of an atypical sul3-associated structure. The third resistance locus was flanked by IS15DI and encoded neomycin resistance (neoR). An oqx-encoding transposon (quinolone resistance), similar in structure to Tn6010, was identified only in pSDC-F2_12BHI2. Both plasmids showed high sequence identity to plasmid pSTM6-275, recently described in Salmonella enterica serotype 1,4,[5],12:i:- that has risen to prominence and become endemic in Australia. IncHI2 ST3 plasmids circulating in commensal and pathogenic E. coli from Australian swine belong to a lineage of plasmids often in association with sul3 and host multiple complex antibiotic and metal resistance structures, formed in part by IS26

    Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution.

    Get PDF
    Abstract CLIC1 (NCC27) is a member of the highly conserved class of chloride ion channels that exists in both soluble and integral membrane forms. Purified CLIC1 can integrate into synthetic lipid bilayers forming a chloride channel with similar properties to those observed in vivo. The structure of the soluble form of CLIC1 has been determined at 1.4-A resolution. The protein is monomeric and structurally homologous to the glutathioneS-transferase superfamily, and it has a redox-active site resembling glutaredoxin. The structure of the complex of CLIC1 with glutathione shows that glutathione occupies the redox-active site, which is adjacent to an open, elongated slot lined by basic residues. Integration of CLIC1 into the membrane is likely to require a major structural rearrangement, probably of the N-domain (residues 1–90), with the putative transmembrane helix arising from residues in the vicinity of the redox-active site. The structure indicates that CLIC1 is likely to be controlled by redox-dependent processes

    Global biogeography of SAR11 marine bacteria

    Get PDF
    The ubiquitous SAR11 bacterial clade is the most abundant type of organism in the worldĝ€™s oceans, but the reasons for its success are not fully elucidated. We analysed 128 surface marine metagenomes, including 37 new Antarctic metagenomes. The large size of the data set enabled internal transcribed spacer (ITS) regions to be obtained from the Southern polar region, enabling the first global characterization of the distribution of SAR11, from waters spanning temperatures ĝ̂'2 to 30°C. Our data show a stable co-occurrence of phylotypes within both ĝ€̃ tropicalĝ€™ (>20°C) and ĝ€̃ polarĝ€™ (<10°C) biomes, highlighting ecological niche differentiation between major SAR11 subgroups. All phylotypes display transitions in abundance that are strongly correlated with temperature and latitude. By assembling SAR11 genomes from Antarctic metagenome data, we identified specific genes, biases in gene functions and signatures of positive selection in the genomes of the polar SAR11ĝ€"genomic signatures of adaptive radiation. Our data demonstrate the importance of adaptive radiation in the organismĝ€™s ability to proliferate throughout the worldĝ€™s oceans, and describe genomic traits characteristic of different phylotypes in specific marine biomes. © 2012 EMBO and Macmillan Publishers Limited All rights reserved

    Comparative genomic analysis of toxin-negative strains of Clostridium difficile from humans and animals with symptoms of gastrointestinal disease

    Get PDF
    Background: Clostridium difficile infections (CDI) are a significant health problem to humans and food animals. Clostridial toxins ToxA and ToxB encoded by genes tcdA and tcdB are located on a pathogenicity locus known as the PaLoc and are the major virulence factors of C. difficile. While toxin-negative strains of C. difficile are often isolated from faeces of animals and patients suffering from CDI, they are not considered to play a role in disease. Toxin-negative strains of C. difficile have been used successfully to treat recurring CDI but their propensity to acquire the PaLoc via lateral gene transfer and express clinically relevant levels of toxins has reinforced the need to characterise them genetically. In addition, further studies that examine the pathogenic potential of toxin-negative strains of C. difficile and the frequency by which toxin-negative strains may acquire the PaLoc are needed. Results: We undertook a comparative genomic analysis of five Australian toxin-negative isolates of C. difficile that lack tcdA, tcdB and both binary toxin genes cdtA and cdtB that were recovered from humans and farm animals with symptoms of gastrointestinal disease. Our analyses show that the five C. difficile isolates cluster closely with virulent toxigenic strains of C. difficile belonging to the same sequence type (ST) and have virulence gene profiles akin to those in toxigenic strains. Furthermore, phage acquisition appears to have played a key role in the evolution of C. difficile. Conclusions: Our results are consistent with the C. difficile global population structure comprising six clades each containing both toxin-positive and toxin-negative strains. Our data also suggests that toxin-negative strains of C. difficile encode a repertoire of putative virulence factors that are similar to those found in toxigenic strains of C. difficile, raising the possibility that acquisition of PaLoc by toxin-negative strains poses a threat to human health. Studies in appropriate animal models are needed to examine the pathogenic potential of toxin-negative strains of C. difficile and to determine the frequency by which toxin-negative strains may acquire the PaLoc

    Critical Assessment of Metagenome Interpretation:A benchmark of metagenomics software

    Get PDF
    International audienceIn metagenome analysis, computational methods for assembly, taxonomic profilingand binning are key components facilitating downstream biological datainterpretation. However, a lack of consensus about benchmarking datasets andevaluation metrics complicates proper performance assessment. The CriticalAssessment of Metagenome Interpretation (CAMI) challenge has engaged the globaldeveloper community to benchmark their programs on datasets of unprecedentedcomplexity and realism. Benchmark metagenomes were generated from newlysequenced ~700 microorganisms and ~600 novel viruses and plasmids, includinggenomes with varying degrees of relatedness to each other and to publicly availableones and representing common experimental setups. Across all datasets, assemblyand genome binning programs performed well for species represented by individualgenomes, while performance was substantially affected by the presence of relatedstrains. Taxonomic profiling and binning programs were proficient at high taxonomicranks, with a notable performance decrease below the family level. Parametersettings substantially impacted performances, underscoring the importance ofprogram reproducibility. While highlighting current challenges in computationalmetagenomics, the CAMI results provide a roadmap for software selection to answerspecific research questions

    The genomic basis of trophic strategy in marine bacteria

    No full text
    Many marine bacteria have evolved to grow optimally at either high (copiotrophic) or low (oligotrophic) nutrient concentrations, enabling different species to colonize distinct trophic habitats in the oceans. Here, we compare the genome sequences of two bacteria, Photobacterium angustum S14 and Sphingopyxis alaskensis RB2256, that serve as useful model organisms for copiotrophic and oligotrophic modes of life and specifically relate the genomic features to trophic strategy for these organisms and define their molecular mechanisms of adaptation. We developed a model for predicting trophic lifestyle from genome sequence data and tested >400,000 proteins representing >500 million nucleotides of sequence data from 126 genome sequences with metagenome data of whole environmental samples. When applied to available oceanic metagenome data (e.g., the Global Ocean Survey data) the model demonstrated that oligotrophs, and not the more readily isolatable copiotrophs, dominate the ocean's free-living microbial populations. Using our model, it is now possible to define the types of bacteria that specific ocean niches are capable of sustaining
    corecore