71 research outputs found

    Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with high 3He/4He

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q04027, doi:10.1029/2007GC001876.We report evidence for a global Ti, Ta, and Nb (TITAN) enriched reservoir sampled by ocean island basalts (OIBs) with high 3He/4He ratios, an isotopic signature associated with the deep mantle. Excesses of Ti (and to a lesser degree Nb and Ta) correlate remarkably well with 3He/4He in a data set of global OIBs, demonstrating that a major element signature is associated with the high 3He/4He mantle. Additionally, we find that OIBs with high 3He/4He ratios have moderately radiogenic 187Os/188Os (>0.135). The TITAN enrichment and radiogenic 187Os/188Os in high 3He/4He OIBs indicate that they are melts of a mantle domain that hosts a nonprimitive (nonchondritic) component. The observation of TITAN enrichment in the high 3He/4He mantle may be important in balancing the Earth's budget for the TITAN elements. Understanding the origin of the TITAN enrichment is important for constraining the evolution of the enigmatic high 3He/4He mantle domain.Funds for helium measurements were provided by NSF-OCE to M.D.K. Funds for major and trace element analyses were provided by NSF-EAR 0509891 to S.R.H

    ACED: Accelerated Computational Electrochemical systems Discovery

    Full text link
    Large-scale electrification is vital to addressing the climate crisis, but many engineering challenges remain to fully electrifying both the chemical industry and transportation. In both of these areas, new electrochemical materials and systems will be critical, but developing these systems currently relies heavily on computationally expensive first-principles simulations as well as human-time-intensive experimental trial and error. We propose to develop an automated workflow that accelerates these computational steps by introducing both automated error handling in generating the first-principles training data as well as physics-informed machine learning surrogates to further reduce computational cost. It will also have the capacity to include automated experiments "in the loop" in order to dramatically accelerate the overall materials discovery pipeline.Comment: 4 pages, 1 figure, accepted to NeurIPS Climate Change and AI Workshop 2020, updating acknowledgements and citation

    Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair

    Get PDF
    Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis. Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly understood. Here we show that heterozygous inactivation of the tumor suppressor gene Pten leads to the formation of basal-like mammary tumors in mice, and that loss of PTEN expression is significantly associated with the BBC subtype in human sporadic and BRCA1-associated hereditary breast cancers. In addition, we identify frequent gross PTEN mutations, involving intragenic chromosome breaks, inversions, deletions and micro copy number aberrations, specifically in BRCA1-deficient tumors. These data provide an example of a specific and recurrent oncogenic consequence of BRCA1-dependent dysfunction in DNA repair and provide insight into the pathogenesis of BBC with therapeutic implications. These findings also argue that obtaining an accurate census of genes mutated in cancer will require a systematic examination for gross gene rearrangements, particularly in tumors with deficient DSB repair

    3-Phosphoinositide–Dependent Kinase 1 Potentiates Upstream Lesions on the Phosphatidylinositol 3-Kinase Pathway in Breast Carcinoma

    Get PDF
    Lesions of ERBB2, PTEN, and PIK3CA activate the phosphati- dylinositol 3-kinase (PI3K) pathway during cancer development by increasing levels of phosphatidylinositol-3,4,5-triphosphate (PIP3). 3-Phosphoinositide-dependent kinase 1 (PDK1) is the first node of the PI3K signal output and is required for activation of AKT. PIP3 recruits PDK1 and AKT to the cell membrane through interactions with their pleckstrin homology domains, allowing PDK1 to activate AKT by phosphorylating it at residue threonine-308. We show that total PDK1 protein and mRNA were overexpressed in a majority of human breast cancers and that 21% of tumors had five or more copies of the gene encoding PDK1, PDPK1. We found that increased PDPK1 copy number was associated with upstream pathway lesions (ERBB2 amplification, PTEN loss, or PIK3CA mutation), as well as patient survival. Examination of an independent set of breast cancers and tumor cell lines derived from multiple forms of human cancers also found increased PDK1 protein levels associated with such upstream pathway lesions. In human mammary cells, PDK1 enhanced the ability of upstream lesions to signal to AKT, stimulate cell growth and migration, and rendered cells more resistant to PDK1 and PI3K inhibition. After orthotopic transplantation, PDK1 overexpression was not oncogenic but dramatically enhanced the ability of ERBB2 to form tumors. Our studies argue that PDK1 overexpression and increased PDPK1 copy number are common occurrences in cancer that potentiate the oncogenic effect of upstream lesions on the PI3K pathway. Therefore, we conclude that alteration of PDK1 is a critical component of oncogenic PI3K signaling in breast cancer

    Integrated molecular pathway analysis informs a synergistic combination therapy targeting PTEN/PI3K and EGFR pathways for basal-like breast cancer

    Get PDF
    The basal-like breast cancer (BLBC) subtype is characterized by positive staining for basal mammary epithelial cytokeratin markers, lack of hormone receptor and HER2 expression, and poor prognosis with currently no approved molecularly-targeted therapies. The oncogenic signaling pathways driving basal-like tumorigenesis are not fully elucidated. Methods One hundred sixteen unselected breast tumors were subjected to integrated analysis of phosphoinositide 3-kinase (PI3K) pathway related molecular aberrations by immunohistochemistry, mutation analysis, and gene expression profiling. Incidence and relationships between molecular biomarkers were characterized. Findings for select biomarkers were validated in an independent series. Synergistic cell killing in vitro and in vivo tumor therapy was investigated in breast cancer cell lines and mouse xenograft models, respectively. Results Sixty-four % of cases had an oncogenic alteration to PIK3CA, PTEN, or INPP4B; when including upstream kinases HER2 and EGFR, 75 % of cases had one or more aberration including 97 % of estrogen receptor (ER)-negative tumors. PTEN-loss was significantly associated to stathmin and EGFR overexpression, positivity for the BLBC markers cytokeratin 5/14, and the BLBC molecular subtype by gene expression profiling, informing a potential therapeutic combination targeting these pathways in BLBC. Combination treatment of BLBC cell lines with the EGFR-inhibitor gefitinib plus the PI3K pathway inhibitor LY294002 was synergistic, and correspondingly, in an in vivo BLBC xenograft mouse model, gefitinib plus PI3K-inhibitor PWT-458 was more effective than either monotherapy and caused tumor regression. Conclusions Our study emphasizes the importance of PI3K/PTEN pathway activity in ER-negative and basal-like breast cancer and supports the future clinical evaluation of combining EGFR and PI3K pathway inhibitors for the treatment of BLBC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2609-2) contains supplementary material, which is available to authorized users.BioMed Central open acces

    Treating breast cancer through novel inhibitors of the phosphatidylinositol 3'-kinase pathway

    Get PDF
    Recent studies indicate that constitutive signaling through the phosphatidylinositol 3'-kinase (PI3K) pathway is a cause of treatment resistance in breast cancer patients. This implies that patients with tumors that exhibit aberrant PI3K signaling may benefit from targeted pathway inhibitors. The first agents to make it to the clinic are the rapamycin analogs. These compounds inhibit the downstream PI3K effector mTOR (mammalian target of rapamycin). A study presented in this issue of Breast Cancer Research suggests that recently developed inhibitors of phosphoinositide-dependent protein kinase 1, a more proximal target of the PI3K pathway, may provide an alternative route to effective PI3K pathway inhibition for breast cancer treatment

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Magmatic processes in developing oceanic crust revealed in a cumulate xenolith collected at the East Pacific Rise, 9°50′N

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q12O04, doi:10.1029/2006GC001316.The petrology and geochemistry of a xenolith, a fragment of a melt-bearing cumulate, within a recently erupted mid-ocean ridge (MOR) lava flow provide information on petrogenetic processes occurring within the newly forming oceanic crust beneath the northern East Pacific Rise (NEPR). The xenolith reveals important petrologic information about MOR magmatic systems concerning (1) melt distribution in a crystal-dominated mush; (2) melt-crystal reactions within the mush; (3) the chemistry of melts that have contributed to the cumulate lithology; and (4) the chemistry of axial melts that enter the axial magma system. The xenolith was enclosed within a moderately primitive, normal mid-ocean ridge basalt (NMORB) erupted in 1991 within the neovolcanic zone of the NEPR, at approximately 9°50′N. The sample is a matrix-dominated, cumulate olivine anorthosite, composed of anorthite (An94-90) and bytownite (An89-70), intergranular olivine (Fo86±0.3), minor sulfide and spinel, and intergranular glass. Marginal corrosion of plagioclase, and possibly olivine, and internal remelting of plagioclase indicate syntexis. It is surmised that the pore volume was eviscerated several times with moderately primitive basaltic melts and reduced by intergranular crystallization of forsteritic olivine. The presence of anorthite as a cumulate phase in the xenolith and the observation of anorthite xenocrysts in NMORB lavas, and as a cumulate phase in ophiolite gabbros, indicate that Ca-rich melts that are not a part of the NMORB lineage play an important role in the construction of the oceanic crust.The Mineral Resources Program, USGS, provided support to W.I.R. for this research. Field and laboratory research was supported by NSF grants OCE-9402360, 9403773, and 0138088 to M.R.P. and NSF grants OCE-9819261 and OCE-0525863 to D.J.F
    • …
    corecore