36 research outputs found

    Breath-by-Breath Analysis of Cardiorespiratory Interaction for Quantifying Developmental Maturity in Premature Infants

    Get PDF
    Breath-by-breath analysis of cardiorespiratory interaction for quantifying developmental maturity in premature infants. J Appl Physiol 112: 859-867, 2012. First published December 15, 2011; doi:10.1152/japplphysiol.01152.2011.-In healthy neonates, connections between the heart and lungs through brain stem chemosensory pathways and the autonomic nervous system result in cardiorespiratory synchronization. This interdependence between cardiac and respiratory dynamics can be difficult to measure because of intermittent signal quality in intensive care settings and variability of heart and breathing rates. We employed a phase-based measure suggested by Sch fer and coworkers (Sch fer C, Rosenblum MG, Kurths J, Abel HH. Nature 392: 239-240, 1998) to obtain a breath-by-breath analysis of cardiorespiratory interaction. This measure of cardiorespiratory interaction does not distinguish between cardiac control of respiration associated with cardioventilatory coupling and respiratory influences on the heart rate associated with respiratory sinus arrhythmia. We calculated, in sliding 4-min windows, the probability density of heartbeats as a function of the concurrent phase of the respiratory cycle. Probability density functions whose Shannon entropy had a \u3c 0.1% chance of occurring from random numbers were classified as exhibiting interaction. In this way, we analyzed 18 infant-years of data from 1,202 patients in the Neonatal Intensive Care Unit at University of Virginia. We found evidence of interaction in 3.3 patient-years of data (18%). Cardiorespiratory interaction increased several-fold with postnatal development, but, surprisingly, the rate of increase was not affected by gestational age at birth. We find evidence for moderate correspondence between this measure of cardiorespiratory interaction and cardioventilatory coupling and no evidence for respiratory sinus arrhythmia, leading to the need for further investigation of the underlying mechanism. Such continuous measures of physiological interaction may serve to gauge developmental maturity in neonatal intensive care patients and prove useful in decisions about incipient illness and about hospital discharge

    Reconstruction of two-dimensional phase dynamics from experiments on coupled oscillators

    Get PDF
    Phase models are a powerful method to quantify the coupled dynamics of nonlinear oscillators from measured data. We use two phase modeling methods to quantify the dynamics of pairs of coupled electrochemical oscillators, based on the phases of the two oscillators independently and the phase difference, respectively. We discuss the benefits of the two-dimensional approach relative to the one-dimensional approach using phase difference. We quantify the dependence of the coupling functions on the coupling magnitude and coupling time delay. We show differences in synchronization predictions of the two models using a toy model. We show that the two-dimensional approach reveals behavior not detected by the one-dimensional model in a driven experimental oscillator. This approach is broadly applicable to quantify interactions between nonlinear oscillators, especially where intrinsic oscillator sensitivity and coupling evolve with time

    The non-evolving internal structure of early-type galaxies: the case study SDSS J0728+3835 at z = 0.206

    Get PDF
    We study the internal dynamical structure of the early-type lens galaxy SDSS J0728+3835 at z = 0.206. The analysis is based on two-dimensional kinematic maps extending out to 1.7 effective radii obtained from Keck spectroscopy, on lensing geometry and on stellar mass estimates obtained from multiband Hubble Space Telescope imaging. The data are modelled under the assumptions of axial symmetry supported by a two-integral distribution function (DF), by applying the combined gravitational lensing and stellar dynamics code CAULDRON, and yielding high-quality constraints for an early-type galaxy at cosmological redshifts. Modelling the total density profile as a power-law of the form rho_tot ~ 1/r^{gamma}, we find that it is nearly isothermal (logarithmic slope gamma = 2.08^{+0.04}_{-0.02}), and quite flattened (axial ratio q = 0.60^{+0.08}_{-0.03}). The galaxy is mildly anisotropic (delta = 0.08 +/- 0.02) and shows a fair amount of rotational support, in particular towards the outer regions. We determine a dark matter fraction lower limit of 28 per cent within the effective radius. The stellar contribution to the total mass distribution is close to maximal for a Chabrier initial mass function (IMF), whereas for a Salpeter IMF the stellar mass exceeds the total mass within the galaxy inner regions. We find that the combination of a NFW dark matter halo with the maximally rescaled luminous profile provides a remarkably good fit to the total mass distribution over a broad radial range. Our results confirm and expand the findings of the SLACS survey for early-type galaxies of comparable velocity dispersion (sigma_SDSS = 214 +/- 11 km/s). The internal structure of J0728 is consistent with that of local early-type galaxies of comparable velocity dispersion as measured by the SAURON project, suggesting lack of evolution in the past two billion years.Comment: 13 pages, 10 figures. MNRAS in press. Revised to match accepted versio

    c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis

    Get PDF
    Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracelluar UO (2) nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO (2) nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO (2)-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO (2) nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO (2) nanoparticles. In the environment, such association of UO (2) nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O (2) or transport in soils and sediments

    Mechanisms and models for industry engagement in collaborative research in commercial fisheries

    Get PDF
    Data and insights from fishers are essential sources of information to advance understanding of fishery and ecosystem dynamics. Incorporating fisher and industry knowledge holds prospects for improving marine science and fisheries management. We address cooperative research in the context of collaboration between fishers, scientists, industries, universities, and agencies to develop applied research to understand marine ecosystems, inform fishery management, enhance sustainability, govern resource use, and investigate social-economic dynamics. We leverage the insights of more than 100 research scientists, fisheries managers, industry representatives, and fishers to outline actionable recommendations for effective approaches and mechanisms to integrate industry data, perspectives, and insights in fisheries science. We also highlight opportunities and address challenges and limitations to such collaboration

    Integrating neuroimaging biomarkers into the multicentre, high-dose erythropoietin for asphyxia and encephalopathy (HEAL) trial: rationale, protocol and harmonisation

    Get PDF
    Introduction: MRI and MR spectroscopy (MRS) provide early biomarkers of brain injury and treatment response in neonates with hypoxic-ischaemic encephalopathy). Still, there are challenges to incorporating neuroimaging biomarkers into multisite randomised controlled trials. In this paper, we provide the rationale for incorporating MRI and MRS biomarkers into the multisite, phase III high-dose erythropoietin for asphyxia and encephalopathy (HEAL) Trial, the MRI/S protocol and describe the strategies used for harmonisation across multiple MRI platforms. Methods and analysis: Neonates with moderate or severe encephalopathy enrolled in the multisite HEAL trial undergo MRI and MRS between 96 and 144 hours of age using standardised neuroimaging protocols. MRI and MRS data are processed centrally and used to determine a brain injury score and quantitative measures of lactate and n-acetylaspartate. Harmonisation is achieved through standardisation-thereby reducing intrasite and intersite variance, real-time quality assurance monitoring and phantom scans. Ethics and dissemination: IRB approval was obtained at each participating site and written consent obtained from parents prior to participation in HEAL. Additional oversight is provided by an National Institutes of Health-appointed data safety monitoring board and medical monitor

    Impact of Ionizing Radiation Dose and Dose Rate on Adipose Stem Cell Function

    No full text
    The use of ionizing radiation within medicine creates an interesting paradox. First, x-rays can be used as an excellent diagnostic tool, allowing doctors to view internal biological structures without having to perform surgery. This can be done thanks to the characteristics of high energy photons, namely excellent penetration depth and various levels of absorption based upon the density of a material. These same characteristics make ionizing radiation a very effective treatment method for cancer. Radiation focused on a tumor will deposit energy when it interacts with a biological structure (e.g. DNA), eventually causing enough damage to kill the cell. That same damage can be done to healthy cells and tissue, slowing the natural healing and repair response of the body. Adipose derived stem cells (ADSCs) are a mesenchymal stem cell line that has been proven to have similar characteristics to bone marrow derived stem cells, except that they much easier to obtain. Within the body, ADSCs act as immunomodulators and assist with the maintenance and repair of tissues. They have been shown to have excellent differentiation capability, making them an extremely viable option for stem cell therapies and regenerative medicine applications. Due to the tissue ADSCs are derived from, they are highly likely to be affected by radiation therapy, especially when treating something like breast cancer. For this reason, the purpose behind this research is to better understand how ADSCs are affected by doses of radiation similar to a single fraction of radiation therapy. We will also explore different dose rates to determine if there is a significant difference in the response of ADSCs. Finally, a method for researching ultra-low doses of radiation will be developed, allowing experimental doses closer to what is experienced from a diagnostic imaging procedure like computed tomography to be performed. The results shown from this research will help fill in the gap regarding how ADSCs respond to radiation therapy relevant doses of ionizing radiation. The potential ADSCs have in the space of regenerative medicine makes them an ideal candidate for study with ionizing radiation, as they are one of the main cell types to promote tissue healing

    Macrocycle-derived functional xanthenes and progress towards concurrent detection of glucose and fructose

    No full text
    The detection of saccharides in biological media is of great current importance for the monitoring of disease states. We have previously reported that solutions of boronic acid-functionalized macrocycles form acyclic oligomeric materials in situ. The oligomers contain fluorescent xanthene moieties. Current efforts are aimed at modulating the spectroscopic responses of these materials for the analysis of specific sugars. We describe conditions whereby the xanthene boronic acids exhibit high colorimetric fructose selectivity. In contrast, at physiological levels selective glucose monitoring can be achieved via fluorescence. Additionally, we describe a method which exhibits promise for detecting both glucose and fructose at dual wavelengths in the UV-Vis region. Mechanistic rationale for each of these findings is presented
    corecore