111 research outputs found
Massive Supergravity and Deconstruction
We present a simple superfield Lagrangian for massive supergravity. It
comprises the minimal supergravity Lagrangian with interactions as well as mass
terms for the metric superfield and the chiral compensator. This is the natural
generalization of the Fierz-Pauli Lagrangian for massive gravity which
comprises mass terms for the metric and its trace. We show that the on-shell
bosonic and fermionic fields are degenerate and have the appropriate spins: 2,
3/2, 3/2 and 1. We then study this interacting Lagrangian using goldstone
superfields. We find that a chiral multiplet of goldstones gets a kinetic term
through mixing, just as the scalar goldstone does in the non-supersymmetric
case. This produces Planck scale (Mpl) interactions with matter and all the
discontinuities and unitarity bounds associated with massive gravity. In
particular, the scale of strong coupling is (Mpl m^4)^1/5, where m is the
multiplet's mass. Next, we consider applications of massive supergravity to
deconstruction. We estimate various quantum effects which generate non-local
operators in theory space. As an example, we show that the single massive
supergravity multiplet in a 2-site model can serve the function of an extra
dimension in anomaly mediation.Comment: 24 pages, 2 figures, some color. Typos fixed and refs added in v
The S-parameter in Holographic Technicolor Models
We study the S parameter, considering especially its sign, in models of
electroweak symmetry breaking (EWSB) in extra dimensions, with fermions
localized near the UV brane. Such models are conjectured to be dual to 4D
strong dynamics triggering EWSB. The motivation for such a study is that a
negative value of S can significantly ameliorate the constraints from
electroweak precision data on these models, allowing lower mass scales (TeV or
below) for the new particles and leading to easier discovery at the LHC. We
first extend an earlier proof of S>0 for EWSB by boundary conditions in
arbitrary metric to the case of general kinetic functions for the gauge fields
or arbitrary kinetic mixing. We then consider EWSB in the bulk by a Higgs VEV
showing that S is positive for arbitrary metric and Higgs profile, assuming
that the effects from higher-dimensional operators in the 5D theory are
sub-leading and can therefore be neglected. For the specific case of AdS_5 with
a power law Higgs profile, we also show that S ~ + O(1), including effects of
possible kinetic mixing from higher-dimensional operator (of NDA size) in the
theory. Therefore, our work strongly suggests that S is positive in
calculable models in extra dimensions.Comment: 21 pages, 2 figures. v2: references adde
Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice
Obesity is closely associated with the metabolic syndrome, a combination of disorders including insulin resistance, diabetes, dyslipidemia, and hypertension. A role for local glucocorticoid reamplification in obesity and the metabolic syndrome has been suggested. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regenerates active cortisol from inactive 11-keto forms, and aP2-HSD1 mice with relative transgenic overexpression of this enzyme in fat cells develop visceral obesity with insulin resistance and dyslipidemia. Here we report that aP2-HSD1 mice also have high arterial blood pressure (BP). The mice have increased sensitivity to dietary salt and increased plasma levels of angiotensinogen, angiotensin II, and aldosterone. This hypertension is abolished by selective angiotensin II receptor AT-1 antagonist at a low dose that does not affect BP in non-Tg littermates. These findings suggest that activation of the circulating renin-angiotensin system (RAS) develops in aP2-HSD1 mice. The long-term hypertension is further reflected by an appreciable hypertrophy and hyperplasia of the distal tubule epithelium of the nephron, resembling salt-sensitive or angiotensin II–mediated hypertension. Taken together, our findings suggest that overexpression of 11β-HSD1 in fat is sufficient to cause salt-sensitive hypertension mediated by an activated RAS. The potential role of adipose 11β-HSD1 in mediating critical features of the metabolic syndrome extends beyond obesity and metabolic complications to include the most central cardiovascular feature of this disorder
New early Eocene tapiromorph perissodactyls from the Ghazij Formation of Pakistan, with implications for mammalian biochronology in Asia
Early Eocene mammals from Indo-Pakistan have only recently come under study. Here we describe the first tapiromorph perissodactyls from the subcontinent. Gandheralophus minor n. gen. and n. sp. and G. robustus n. sp. are two species of Isectolophidae differing in size and in reduction of the anterior dentition. Gandheralophus is probably derived from a primitive isectolophid such as Orientolophus hengdongensis from the earliest Eocene of China, and may be part of a South Asian lineage that also contains Karagalax from the middle Eocene of Pakistan. Two specimens are referred to a new, unnamed species of Lophialetidae. Finally, a highly diagnostic M3 and a molar fragment are described as the new eomoropid chalicothere Litolophus ghazijensis sp. nov. The perissodactyls described here, in contrast to most other mammalian groups published from the early Eocene of Indo-Pakistan, are most closely related to forms known from East and Central Asia. Tapiromorpha are diverse and biochronologically important in the Eocene there and our results allow the first biochronological correlation between early Eocene mammal faunas in Indo-Pakistan and the rest of Asia. We suggest that the upper Ghazij Formation of Pakistan is best correlated with the middle or late part of the Bumbanian Asian Land-Mammal Age, while the Kuldana and Subathu Formations of Pakistan and India are best correlated with the Arshantan Asian Land-Mammal Age
Zanamivir susceptibility monitoring and characterization of influenza virus clinical isolates obtained during phase II clinical efficacy studies
Zanamivir is a highly selective neuraminidase (NA) inhibitor with
demonstrated clinical efficacy against influenza A and B virus infections.
In phase II clinical efficacy trials (NAIB2005 and NAIB2008), virological
substudies showed mean reductions in virus shedding after 24 h of
treatment of 1.5 to 2.0 log(10) 50% tissue culture infective doses
compared to a placebo, with no reemergence of virus after the completion
of therapy. Paired isolates (n = 41) obtained before and during therapy
with zanamivir demonstrated no shifts in susceptibility to zanamivir when
measured by NA assays, although for a few isolates NA activity was too low
to evaluate. In plaque reduction assays in MDCK cells, the susceptibility
of isolates to zanamivir was extremely variable even at baseline and did
not correlate with the speed of resolution of virus shedding. Isolates
with apparent limited susceptibility to zanamivir by plaque reduction
proved highly susceptible in vivo in the ferret model. Further sequence
analysis of paired isolates revealed no changes in the hemagglutinin and
NA genes in the majority of isolates. The few changes observed were all
natural variants. No amino acid changes that had previously been
identified in vitro as being involved with reduced susceptibility to
zanamivir were observed. These studies highlighted problems associated
with monitoring susceptibility to NA inhibitors in the clinic, in that no
reliable cell-based assay is available. At present the NA assay is the
best available predictor of susceptibility to NA inhibitors in vivo, as
measured in the validated ferret model of infection
Pathophysiology of exercise intolerance in chronic diseases: the role of diminished cardiac performance in mitochondrial and heart failure patients
Objective: Exercise intolerance is a clinical hallmark of chronic conditions. The present study determined pathophysiological mechanisms of exercise intolerance in cardiovascular, neuromuscular, and metabolic disorders.
Methods: In a prospective cross-sectional observational study 152 patients (heart failure reduced ejection fraction, n=32; stroke, n=34; mitochondrial disease, n=28; type two diabetes, n=28; and healthy controls, n=30) performed cardiopulmonary exercise testing with metabolic and haemodynamic measurements. Peak exercise O2 consumption and cardiac power output were measures of exercise tolerance and cardiac performance.
Results: Exercise tolerance was significantly diminished in patients compared with controls (ie, by 45% stroke, 39% mitochondria disease, and 33% diabetes and heart failure, p<0.05). Cardiac performance was only significantly reduced in heart failure (due to reduced heart rate, stroke volume, and blood pressure) and mitochondrial patients (due reduced stroke volume) compared with controls (ie, by 53% and 26%, p<0.05). Ability of skeletal muscles to extract oxygen (ie, arterial-venous O2 difference) was diminished in mitochondrial, stroke, and diabetes patients (by 24%, 22%, and 18%, p<0.05), but increased by 21% in heart failure (p<0.05) compared with controls. Cardiac output explained 65% and 51% of the variance in peak O2 consumption (p<0.01) in heart failure and mitochondrial patients, whereas arterial-venous O2 difference explained 69% (p<0.01) of variance in peak O2 consumption in diabetes, and 65% and 48% in stroke and mitochondrial patients (p<0.01).
Conclusions: Different mechanisms explain exercise intolerance in patients with heart failure, mitochondrial dysfunction, stroke and diabetes. Their better understanding may improve management of patients, their stress tolerance and quality of life
Rationale and design of the randomized multicentre His Optimized Pacing Evaluated for Heart Failure (HOPE-HF) trial:HOPE HF Trial rationale and design
Aims In patients with heart failure and a pathologically prolonged PR interval, left ventricular (LV) filling can be improved by shortening atrioventricular delay using His‐bundle pacing. His‐bundle pacing delivers physiological ventricular activation and has been shown to improve acute haemodynamic function in this group of patients. In the HOPE‐HF (His Optimized Pacing Evaluated for Heart Failure) trial, we are investigating whether these acute haemodynamic improvements translate into improvements in exercise capacity and heart failure symptoms. Methods and results This multicentre, double‐blind, randomized, crossover study aims to randomize 160 patients with PR prolongation (≥200 ms), LV impairment (EF ≤ 40%), and either narrow QRS (≤140 ms) or right bundle branch block. All patients receive a cardiac device with leads positioned in the right atrium and the His bundle. Eligible patients also receive a defibrillator lead. Those not eligible for implantable cardioverter defibrillator have a backup pacing lead positioned in an LV branch of the coronary sinus. Patients are allocated in random order to 6 months of (i) haemodynamically optimized dual chamber His‐bundle pacing and (ii) backup pacing only, using the non‐His ventricular lead. The primary endpoint is change in exercise capacity assessed by peak oxygen uptake. Secondary endpoints include change in ejection fraction, quality of life scores, B‐type natriuretic peptide, daily patient activity levels, and safety and feasibility assessments of His‐bundle pacing. Conclusions Hope‐HF aims to determine whether correcting PR prolongation in patients with heart failure and narrow QRS or right bundle branch block using haemodynamically optimized dual chamber His‐bundle pacing improves exercise capacity and symptoms. We aim to complete recruitment by the end of 2018 and report in 2020
Phenotypic dissection of the mouse Ren-1(d) knockout by complementation with human renin
Normal renin synthesis and secretion is important for the maintenance of juxtaglomerular apparatus architecture. Mice lacking a functional Ren-1d gene are devoid of renal juxtaglomerular cell granules and exhibit an altered macula densa morphology. Due to the species-specificity of renin activity, transgenic mice are ideal models for experimentally investigating and manipulating expression patterns of the human renin gene in a native cellular environment without confounding Renin-angiotensin-system interactions. A 55 kb transgene encompassing the human renin locus was crossed onto the mouse Ren-1d-null background, restoring granulation in juxtaglomerular cells. Correct processing of human renin in dense core granules was confirmed by immunogold labelling. After stimulation of the renin-angiotensin system, juxtaglomerular cells contained rhomboid protogranules with paracrystalline contents, dilated rough endoplasmic reticulum and electron-lucent granular structures. However, complementation of Ren-1d-/- mice with human renin was unable to rescue the abnormality seen in macula densa structure. The juxtaglomerular apparatus was still able to respond to tubuloglomerular feedback in isolated perfused juxtaglomerular apparatus preparations, although minor differences in glomerular tuft contractility and macula densa cell calcium handling were observed. This study reveals that the human renin protein is able to complement the mouse Ren-1d-/- non-granulated defect and suggests that granulopoiesis requires a structural motif that is conserved between the mouse Ren-1d and human renin proteins. It also suggests that the altered macula densa phenotype is related to the activity of the renin-1d enzyme in a local juxtaglomerular renin-angiotensin system
Longitudinal telomere length and body composition in healthy term-born infants during the first two years of life
Objective Leukocyte telomere length (LTL) is one of the markers of biological aging as shortening occurs over time. Shorter LTL has been associated with adiposity and a higher risk of cardiovascular diseases. The objective was to assess LTL and LTL shortening during the first 2 years of life in healthy, term-born infants and to associate LTL shortening with potential stressors and body composition. Study design In 145 healthy, term-born infants (85 boys), we measured LTL in blood, expressed as telomere to single-gene copy ratio (T/S ratio), at 3 months and 2 years by quantitative PCR technique. Fat mass (FM) was assessed longitudinally by PEAPOD, DXA, and abdominal FM by ultrasound. Results LTL decreased by 8.5% from 3 months to 2 years (T/S ratio 4.10 vs 3.75, p<0.001). LTL shortening from 3 months to 2 years associated with FM%(R = 0.254), FM index(R = 0.243) and visceral FM(R = 0.287) at 2 years. LTL shortening tended to associate with gain in FM% from 3 to 6 months (R = 0.155, p = 0.11), in the critical window for adiposity programming. There was a trend to a shorter LTL in boys at 2 years(p = 0.056). LTL shortening from 3 months to 2 years was not different between sexes. Conclusion We present longitudinal LTL values and show that LTL shortens considerably (8.5%) during the first 2 years of life. LTL shortening during first 2 years of life was associated with FM%, FMI and visceral FM at age 2 years, suggesting that adverse adiposity programming in early life could contribute to more LTL shortening
Administration of ferric derisomaltose for iron deficiency and heart failure during hospital admission or at the clinic – insights from the IRONMAN trial
No abstract available
- …