46 research outputs found

    The Far-infrared Continuum of Quasars

    Get PDF
    ISO provides a key new far-infrared window through which to observe the multi-wavelength spectral energy distributions (SEDs) of quasars and active galactic nuclei (AGN). It allows us, for the first time, to observe a substantial fraction of the quasar population in the far-IR, and to obtain simultaneous, multi-wavelength observations from 5--200 microns. With these data we can study the behavior of the IR continuum in comparison with expectations from competing thermal and non-thermal models. A key to determining which mechanism dominates, is the measurement of the peak wavelength of the emission and the shape of the far-IR--mm turnover. Turnovers which are steeper than frequency^2.5 indicate thermal dust emission in the far-IR. Preliminary results from our ISO data show broad, fairly smooth, IR continuum emission with far-IR turnovers generally too steep to be explained by non-thermal synchrotron emission. Assuming thermal emission throughout leads to a wide inferred temperature range of 50-1000 K. The hotter material, often called the AGN component, probably originates in dust close to and heated by the central source, e.g. the ubiquitous molecular torus. The cooler emission is too strong to be due purely to cool, host galaxy dust, and so indicates either the presence of a starburst in addition to the AGN or AGN-heated dust covering a wider range of temperatures than present in the standard, optically thick torus models.Comment: 4 pages, to be published in the proceedings of "The Universe as Seen by ISO," ed. M. Kessler. This and related papers can be found at http://hea-www.harvard.edu/~ehooper/ISOkp/ISOkp.htm

    Infrared Properties of High Redshift and X-ray Selected AGN Samples

    Full text link
    The NASA/ISO Key Project on active galactic nuclei (AGN) seeks to better understand the broad-band spectral energy distributions (SEDs) of these sources from radio to X-rays, with particular emphasis on infrared properties. The ISO sample includes a wide variety of AGN types and spans a large redshift range. Two subsamples are considered herein: 8 high-redshift (1 < z < 4.7) quasars; and 22 hard X-ray selected sources. The X-ray selected AGN show a wide range of IR continuum shapes, extending to cooler colors than the optical/radio sample of Elvis et al. (1994). Where a far-IR turnover is clearly observed, the slopes are < 2.5 in all but one case so that non-thermal emission remains a possibility. The highest redshift quasars show extremely strong, hot IR continua requiring ~ 100 solar masses of 500 - 1000 Kelvin dust with ~ 100 times weaker optical emission. Possible explanations for these unusual properties include: reflection of the optical light from material above/below a torus; strong obscuration of the optical continuum; or an intrinsic deficit of optical emission.Comment: 8 pages, 3 figures (2 color), to be published in the Springer Lecture Notes of Physics Series as part of the proceedings for "ISO Surveys of a Dusty Universe," a workshop held at Ringberg Castle, Germany, November 8 - 12, 1999. Requires latex style files for this series: cl2emult.cls, cropmark.sty, lnp.sty, sprmindx.sty, subeqnar.sty (included with submission

    Chandra and XMM-Newton observations of Tololo 0109-383

    Get PDF
    We present and discuss Chandra and XMM-Newton observations of the Seyfert 2 galaxy and Compton-thick absorbed source, Tololo~0109-383. The hard X-ray emission (i.e. above \sim2 keV), is dominated by a spatially unresolved reflection component, as already discovered by previous ASCA and BeppoSAX observ ations. The soft X-ray emission is partly (\sim15%) extended over about 1 kpc. Below 2 keV, the spectrum is very steep and two emission lines, probably due to recombination to He-like ions of oxygen and neon, are clearly present. Combining X-rays and optical information taken from the literature, we propose an overall scenario for the nuclear regions of this source.Comment: 6 pages, 6 figures, A&A 399, 51

    Luminosity-variation independent location of the circum-nuclear, hot dust in NGC 4151

    Get PDF
    After recent sensitivity upgrades at the Keck Interferometer (KI), systematic interferometric 2um studies of the innermost dust in nearby Seyfert nuclei are within observational reach. Here, we present the analysis of new interferometric data of NGC 4151, discussed in context of the results from recent dust reverberation, spectro-photometric and interferometric campaigns. The complete data set gives a complex picture, in particular the measured visibilities from now three different nights appear to be rather insensitive to the variation of the nuclear luminosity. KI data alone indicate two scenarios: the K-band emission is either dominated to ~90% by size scales smaller than 30mpc, which falls short of any dust reverberation measurement in NGC 4151 and of theoretical models of circum-nuclear dust distributions. Or contrary, and more likely, the K-band continuum emission is dominated by hot dust (>= 1300K) at linear scales of about 50mpc. The linear size estimate varies by a few tens of percent depending on the exact morphology observed. Our interferometric, deprojected centro-nuclear dust radius estimate of 55+-5mpc is roughly consistent with the earlier published expectations from circum-nuclear, dusty radiative transfer models, and spectro-photometric modeling. However, our data do not support the notion that the dust emission size scale follows the nuclear variability of NGC 4151 as a R_dust \propto L_nuc^0.5 scaling relation. Instead variable nuclear activity, lagging, and variable dust response to illumination changes need to be combined to explain the observations.Comment: 19 pages, 3 figures, 3 tables, accepted for publication in Ap

    A model for the X-ray absorption in Compton--thin AGN

    Full text link
    The fraction of AGN with photoelectric absorption in the X-rays ranging from NH of 10^{22} up to about 10^{24} cm^{-2} (Compton-thin) appears observationally to be anticorrelated to their luminosity Lx. This recently found evidence is used to investigate the location of the absorbing gas. The molecular torus invoked in the unified picture of AGN, while it can be regarded as confirmed on several grounds to explain the Compton-thick objects, do not conform to this new constraint, at least in its physical models as developed so far. In the frame of observationally based evidence that in Compton-thin sources the absorbing gas might be located far away from the X-ray source, it is shown that the gravitational effects of the black hole (BH) on the molecular gas in a disk, within 25-450 pc (depending on the BH mass, from 10^6 to 10^9 M_solar, leads naturally to the observed anticorrelation, under the assumption of a statistical correlation between the BH mass and Lx. Its normalization is also reproduced provided that the surface density, Sigma, of this gas is larger than about 150-200 M_solar pc^{-2}, and assuming that the bolometric luminosity is one tenth of the Eddington limit. Interestingly, the required values are consistent with the value of the 300 pc molecular disk in our own galaxy, namely 500 M_solar pc^{-2}. In a sample of nearby galaxies from the BIMA SONG survey, it is found that half of the objects have central Sigma larger than 150 M_solar pc${-2}. Given the simplicity of the proposed model, this finding is very encouraging, waiting for future higher resolution surveys in CO on more distant galaxies.Comment: Astronomy and Astrophysics, in pres

    Unveiling the broad band X-ray continuum and iron line complex in Mkr 841

    Full text link
    Mkr 841 is a bright Seyfert 1 galaxy known to harbor a strong soft excess and a variable Kα\alpha iron line. It has been observed during 3 different periods by XMM for a total cumulated exposure time of \sim108 ks. We present in this paper a broad band spectral analysis of the complete EPIC-pn data sets. We were able to test two different models for the soft excess, a relativistically blurred photoionized reflection (\r model) and a relativistically smeared ionized absorption (\a model). The continuum is modeled by a simple cut-off power law and we also add a neutral reflection. These observations reveal the extreme and puzzling spectral and temporal behaviors of the soft excess and iron line. The 0.5-3 keV soft X-ray flux decreases by a factor 3 between 2001 and 2005 and the line shape appears to be a mixture of broad and narrow components. We succeed in describing this complex broad-band 0.5-10 keV spectral variability using either \r or \a to fit the soft excess. Both models give statistically equivalent results even including simultaneous BeppoSAX data up to 200 keV. Both models are consistent with the presence of remote reflection characterized by a constant narrow component in the data. However they differ in the presence of a broad line component present in \r but not needed in \a. This study also reveals the sporadic presence of relativistically redshifted narrow iron lines.Comment: Accepted in A&A. 17 pages and 21 figure

    New constraints on the continuum-emission mechanism of AGN: Intensive monitoring of NGC 7469 in the X-ray and ultraviolet

    Get PDF
    We have undertaken near-continuous monitoring of the Seyfert 1 galaxy NGC 7469 in the X-ray with RXTE over a ~30d baseline. The source shows strong variability with a root-mean-square (rms) amplitude of ~16 per cent, and peak-to-peak variations of a factor of order 2. Simultaneous data over this period were obtained in the ultraviolet (UV) using IUE, making this the most intensive X-ray UV/X-ray variability campaign performed for any active galaxy. Comparison of the continuum light curves reveals very similar amplitudes of variability, but different variability characteristics, with the X-rays showing much more rapid variations. The data are not strongly correlated at zero lag. The largest absolute value of the correlation coefficient occurs for an anticorrelation between the two bands, with the X-ray variations leading the UV by ~4d. The largest positive correlation is for the ultraviolet to lead the X-rays by ~4d. Neither option appears to be compatible with any simple interband transfer function. The peak positive correlation at ~4d occurs because the more prominent peaks in the UV light curve appear to lead those in the X-rays by this amount. However, the minima of the light curves are near-simultaneous. These observations provide new constraints on theoretical models of the central regions of active galactic nuclei. Models in which the observed UV emission is produced solely by re-radiation of absorber X-rays are ruled out by our data, as are those in which the X-rays are produced solely by Compton upscattering of the observed UV component by a constant distribution of particles.Comment: 33 pages, 8 figures. LaTeX with encapsulated postscript. To appear in the Astrophysical Journal. Also available via http://lheawww.gsfc.nasa.gov/users/nandra/pubs/7469/abstract.htm

    The HELLAS2XMM survey: XI. Unveiling the nature of X-ray Bright Optically Normal Galaxies

    Full text link
    X-ray Bright Optically Normal Galaxies (XBONGs) constitute a small but not negligible fraction of hard X-ray selected sources in recent Chandra and XMM-Newton surveys. Even though several possibilities were proposed to explain why a relatively luminous hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the nature of XBONGs is still subject of debate. We aim to a better understanding of their nature by means of a multiwavelength and morphological analysis of a small sample of these sources. Good-quality photometric near-infrared data (ISAAC/VLT) of four low-redshift (z=0.1-0.3) XBONGs, selected from the HELLAS2XMM survey, have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique through the least-squares fitting program GALFIT. The surface brightness decomposition allows us to reveal a nuclear point-like source, likely to be responsible of the X-ray emission, in two out of the four sources. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4pi) at the nuclear source, combined with the low nuclear activity, may explain the lack of optical emission lines. The third XBONG is associated with an X-ray extended source and no nuclear excess is detected in the near infrared at the limits of our observations. The last source is associated to a close (d< 1 arcsec) double system and the fitting procedure cannot achieve a firm conclusion.Comment: 20 pages, 12 figures, A&A in pres

    The Far-Infrared Spectral Energy Distributions of X-ray-selected Active Galaxies

    Get PDF
    [Abridged] We present ISO far-infrared (IR) observations of 21 hard X-ray selected AGN from the HEAO-1 A2 sample. We compare the far-IR to X-ray spectral energy distributions (SEDs) of this sample with various radio and optically selected AGN samples. The hard-X-ray selected sample shows a wider range of optical/UV shapes extending to redder near-IR colors. The bluer objects are Seyfert 1s, while the redder AGN are mostly intermediate or type 2 Seyferts. This is consistent with a modified unification model in which the amount of obscuring material increases with viewing angle and may be clumpy. Such a scenario, already suggested by differing optical/near-IR spectroscopic and X-ray AGN classifications, allows for different amounts of obscuration of the continuum emission in different wavebands and of the broad emission line region which results in a mixture of behaviors for AGN with similar optical emission line classifications. The resulting limits on the column density of obscuring material through which we are viewing the redder AGN are 100 times lower than for the standard optically thick torus models. The resulting decrease in optical depth of the obscuring material allows the AGN to heat more dust at larger radial distances. We show that an AGN-heated, flared, dusty disk with mass 10^9 solar and size of few hundred pc is able to generate optical-far-IR SEDs which reproduce the wide range of SEDs present in our sample with no need for an additional starburst component to generate the long-wavelength, cooler part of the IR continuum.Comment: 40 pages, 14 figures, accepted for publication in Astrophysical Journal, V. 590, June 10, 200

    The Science Case for an Extended Spitzer Mission

    Full text link
    Although the final observations of the Spitzer Warm Mission are currently scheduled for March 2019, it can continue operations through the end of the decade with no loss of photometric precision. As we will show, there is a strong science case for extending the current Warm Mission to December 2020. Spitzer has already made major impacts in the fields of exoplanets (including microlensing events), characterizing near Earth objects, enhancing our knowledge of nearby stars and brown dwarfs, understanding the properties and structure of our Milky Way galaxy, and deep wide-field extragalactic surveys to study galaxy birth and evolution. By extending Spitzer through 2020, it can continue to make ground-breaking discoveries in those fields, and provide crucial support to the NASA flagship missions JWST and WFIRST, as well as the upcoming TESS mission, and it will complement ground-based observations by LSST and the new large telescopes of the next decade. This scientific program addresses NASA's Science Mission Directive's objectives in astrophysics, which include discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars.Comment: 75 pages. See page 3 for Table of Contents and page 4 for Executive Summar
    corecore