167 research outputs found

    Interaction of the Yersinia pestis type III regulatory proteins LcrG and LcrV occurs at a hydrophobic interface

    Get PDF
    BACKGROUND: Secretion of anti-host proteins by Yersinia pestis via a type III mechanism is not constitutive. The process is tightly regulated and secretion occurs only after an appropriate signal is received. The interaction of LcrG and LcrV has been demonstrated to play a pivotal role in secretion control. Previous work has shown that when LcrG is incapable of interacting with LcrV, secretion of anti-host proteins is prevented. Therefore, an understanding of how LcrG interacts with LcrV is required to evaluate how this interaction regulates the type III secretion system of Y. pestis. Additionally, information about structure-function relationships within LcrG is necessary to fully understand the role of this key regulatory protein. RESULTS: In this study we demonstrate that the N-terminus of LcrG is required for interaction with LcrV. The interaction likely occurs within a predicted amphipathic coiled-coil domain within LcrG. Our results demonstrate that the hydrophobic face of the putative helix is required for LcrV interaction. Additionally, we demonstrate that the LcrG homolog, PcrG, is incapable of blocking type III secretion in Y. pestis. A genetic selection was utilized to obtain a PcrG variant capable of blocking secretion. This PcrG variant allowed us to locate a region of LcrG involved in secretion blocking. CONCLUSION: Our results demonstrate that LcrG interacts with LcrV via hydrophobic interactions located in the N-terminus of LcrG within a predicted coiled-coil motif. We also obtained preliminary evidence that the secretion blocking activity of LcrG is located between amino acids 39 and 53

    LcrG secretion is not required for blocking of Yops secretion in Yersinia pestis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>LcrG, a negative regulator of the <it>Yersinia </it>type III secretion apparatus has been shown to be primarily a cytoplasmic protein, but is secreted at least in <it>Y. pestis</it>. LcrG secretion has not been functionally analyzed and the relevance of LcrG secretion on LcrG function is unknown.</p> <p>Results</p> <p>An LcrG-GAL4AD chimera, originally constructed for two-hybrid analyses to analyze LcrG protein interactions, appeared to be not secreted but the LcrG-GAL4AD chimera retained the ability to regulate Yops secretion. This result led to further investigation to determine the significance of LcrG secretion on LcrG function. Additional analyses including deletion and substitution mutations of amino acids 2–6 in the N-terminus of LcrG were constructed to analyze LcrG secretion and LcrG's ability to control secretion. Some changes to the N-terminus of LcrG were found to not affect LcrG's secretion or LcrG's secretion-controlling activity. However, substitution of poly-isoleucine in the N-terminus of LcrG did eliminate LcrG secretion but did not affect LcrG's secretion controlling activity.</p> <p>Conclusion</p> <p>These results indicate that secretion of LcrG, while observable and T3SS mediated, is not relevant for LcrG's ability to control secretion.</p

    Immunization of mice with YscF provides protection from Yersinia pestis infections

    Get PDF
    BACKGROUND: Yersinia pestis, the causative agent of plague, is a pathogen with a tremendous ability to cause harm and panic in populations. Due to the severity of plague and its potential for use as a bioweapon, better preventatives and therapeutics for plague are desirable. Subunit vaccines directed against the F1 capsular antigen and the V antigen (also known as LcrV) of Y. pestis are under development. However, these new vaccine formulations have some possible limitations. The F1 antigen is not required for full virulence of Y. pestis and LcrV has a demonstrated immunosuppressive effect. These limitations could damper the ability of F1/LcrV based vaccines to protect against F1-minus Y. pestis strains and could lead to a high rate of undesired side effects in vaccinated populations. For these reasons, the use of other antigens in a plague vaccine formulation may be advantageous. RESULTS: Desired features in vaccine candidates would be antigens that are conserved, essential for virulence and accessible to circulating antibody. Several of the proteins required for the construction or function of the type III secretion system (TTSS) complex could be ideal contenders to meet the desired features of a vaccine candidate. Accordingly, the TTSS needle complex protein, YscF, was selected to investigate its potential as a protective antigen. In this study we describe the overexpression, purification and use of YscF as a protective antigen. YscF immunization triggers a robust antibody response to YscF and that antibody response is able to afford significant protection to immunized mice following challenge with Y. pestis. Additionally, evidence is presented that suggests antibody to YscF is likely not protective by blocking the activity of the TTSS. CONCLUSION: In this study we investigated YscF, a surface-expressed protein of the Yersinia pestis type III secretion complex, as a protective antigen against experimental plague infection. Immunization of mice with YscF resulted in a high anti-YscF titer and provided protection against i.v. challenge with Y. pestis. This is the first report to our knowledge utilizing a conserved protein from the type III secretion complex of a gram-negative pathogen as a candidate for vaccine development

    Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring pK_a Effects and Demonstrating Electrocatalysis

    Get PDF
    Substrate selectivity in reductive multi-electron/proton catalysis with small molecules such as N_2, CO_2, and O_2 is a major challenge for catalyst design, especially where the competing hydrogen evolution reaction (HER) is thermodynamically and kinetically competent. In this study, we investigate how the selectivity of a tris(phosphine)borane iron(I) catalyst, P_3^BFe^+, for catalyzing the nitrogen reduction reaction (N_2RR, N_2-to-NH_3 conversion) versus HER changes as a function of acid pK_a. We find that there is a strong correlation between pKa and N_2RR efficiency. Stoichiometric studies indicate that the anilinium triflate acids employed are only compatible with the formation of early stage intermediates of N_2 reduction (e.g., Fe(NNH) or Fe(NNH_2)) in the presence of the metallocene reductant Cp*_2Co. This suggests that the interaction of acid and reductant is playing a critical role in N–H bond forming reactions. DFT studies identify a protonated metallocene species as a strong PCET donor and suggest that it should be capable of forming the early stage N–H bonds critical for N_2RR. Furthermore, DFT studies also suggest that the observed pK_a effect on N_2RR efficiency is attributable to the rate and thermodynamics, of Cp*_2Co protonation by the different anilinium acids. Inclusion of Cp*_2Co^+ as a co-catalyst in controlled potential electrolysis experiments leads to improved yields of NH_3. The data presented provide what is to our knowledge the first unambiguous demonstration of electrocatalytic nitrogen fixation by a molecular catalyst (up to 6.7 equiv NH_3 per Fe at −2.1 V vs Fc^(+/0))

    Catalytic N_2-to-NH_3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET

    Get PDF
    We have recently reported on several Fe catalysts for N_2-to-NH_3 conversion that operate at low temperature (−78 °C) and atmospheric pressure while relying on a very strong reductant (KC_8) and acid ([H(OEt_2)_2][BArF_4]). Here we show that our original catalyst system, P_3^BFe, achieves both significantly improved efficiency for NH_3 formation (up to 72% for e^– delivery) and a comparatively high turnover number for a synthetic molecular Fe catalyst (84 equiv of NH_3 per Fe site), when employing a significantly weaker combination of reductant (Cp*_2Co) and acid ([Ph_2NH_2][OTf] or [PhNH_3][OTf]). Relative to the previously reported catalysis, freeze-quench Mössbauer spectroscopy under turnover conditions suggests a change in the rate of key elementary steps; formation of a previously characterized off-path borohydrido–hydrido resting state is also suppressed. Theoretical and experimental studies are presented that highlight the possibility of protonated metallocenes as discrete PCET reagents under the present (and related) catalytic conditions, offering a plausible rationale for the increased efficiency at reduced driving force of this Fe catalyst system

    The UvrD303 Hyper-helicase Exhibits Increased Processivity

    Get PDF
    DNA helicases use energy derived from nucleoside 5â€Č-triphosphate hydrolysis to catalyze the separation of double-stranded DNA into single-stranded intermediates for replication, recombination, and repair. Escherichia coli helicase II (UvrD) functions in methyl-directed mismatch repair, nucleotide excision repair, and homologous recombination. A previously discovered 2-amino acid substitution of residues 403 and 404 (both Asp → Ala) in the 2B subdomain of UvrD (uvrD303) confers an antimutator and UV-sensitive phenotype on cells expressing this allele. The purified protein exhibits a “hyper-helicase” unwinding activity in vitro. Using rapid quench, pre-steady state kinetic experiments we show the increased helicase activity of UvrD303 is due to an increase in the processivity of the unwinding reaction. We suggest that this mutation in the 2B subdomain results in a weakened interaction with the 1B subdomain, allowing the helicase to adopt a more open conformation. This is consistent with the idea that the 2B subdomain may have an autoregulatory role. The UvrD303 mutation may enable the helicase to unwind DNA via a “strand displacement” mechanism, which is similar to the mechanism used to processively translocate along single-stranded DNA, and the increased unwinding processivity may contribute directly to the antimutator phenotype

    Development of the morpholino gene knockdown technique in Fundulus heteroclitus : a tool for studying molecular mechanisms in an established environmental model

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Aquatic Toxicology 87 (2008): 289-295, doi:10.1016/j.aquatox.2008.02.010.A significant challenge in environmental toxicology is that many genetic and genomic tools available in laboratory models are not developed for commonly used environmental models. The Atlantic killifish (Fundulus heteroclitus) is one of the most studied teleost environmental models, yet few genetic or genomic tools have been developed for use in this species. The advancement of genetic and evolutionary toxicology will require that many of the tools developed in laboratory models be transferred into species more applicable to environmental toxicology. Antisense morpholino oligonucleotide (MO) gene knockdown technology has been widely utilized to study development in zebrafish and has been proven to be a powerful tool in toxicological investigations through direct manipulation of molecular pathways. To expand the utility of killifish as an environmental model, MO gene knockdown technology was adapted for use in Fundulus. Morpholino microinjection methods were altered to overcome the significant differences between these two species. Morpholino efficacy and functional duration were evaluated with molecular and phenotypic methods. A cytochrome P450-1A (CYP1A) MO was used to confirm effectiveness of the methodology. For CYP1A MO-injected embryos, a 70% reduction in CYP1A activity, a 86% reduction in total CYP1A protein, a significant increase in ÎČ-naphthoflavone-induced teratogenicity, and estimates of functional duration (50% reduction in activity 10 dpf, and 86% reduction in total protein 12 dpf) conclusively demonstrated that MO technologies can be used effectively in killifish and will likely be just as informative as they have been in zebrafish.This work was funded in part by the National Institute of Environmental Health Sciences through the Duke Superfund Basic Research Center (P42ES010356), the Boston University Superfund Basic Research Program (P42ES007381), and the Duke Integrated Toxicology and Environmental Health Program (ES-T32-0007031). Additional support was provided by a U.S. Environmental Protection Agency STAR fellowship awarded to C.R.F

    Demonstrating the validity of the Video Game Functional Assessment-Revised (VGFA-R)

    Get PDF
    Problematic video play has been well documented over the course of the last decade. So much so the DSM-5 (APA, 2013) has included problematic video gaming as disorder categorized as Internet Gaming Disorder. The field of applied behavior analysis has been utilizing functional assessments for the last 30 years and has showed evidence of effective results across different populations and environments. Therefore, the purpose of this investigation (comprising three studies) was to validate an indirect functional assessment entitled the Video Game Functional Assessment-Revised (VGFA-R). Using academic experts in the field of video game addiction and applied behavioral analysis (n=6), the first study examined the content validity of the VGFA-R and was able to demonstrate the assessment exceeded the criterion for an established assessment. A second study comprising a survey of 467 gamers examined the factorability by using a confirmatory factor analysis, and found that VGFA-R had an overall variance above .60. Within the third laboratory-based study using gamers (n=11), the VGFA-R was examined for construct validity and found the VGFA-R was able to predict 85% of the appropriate function of behavior. Implications of the study are discussed along with the strengths and limitations of the study and future research directions

    Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring pK_a Effects and Demonstrating Electrocatalysis

    Get PDF
    Substrate selectivity in reductive multi-electron/proton catalysis with small molecules such as N_2, CO_2, and O_2 is a major challenge for catalyst design, especially where the competing hydrogen evolution reaction (HER) is thermodynamically and kinetically competent. In this study, we investigate how the selectivity of a tris(phosphine)borane iron(I) catalyst, P_3^BFe^+, for catalyzing the nitrogen reduction reaction (N_2RR, N_2-to-NH_3 conversion) versus HER changes as a function of acid pK_a. We find that there is a strong correlation between pKa and N_2RR efficiency. Stoichiometric studies indicate that the anilinium triflate acids employed are only compatible with the formation of early stage intermediates of N_2 reduction (e.g., Fe(NNH) or Fe(NNH_2)) in the presence of the metallocene reductant Cp*_2Co. This suggests that the interaction of acid and reductant is playing a critical role in N–H bond forming reactions. DFT studies identify a protonated metallocene species as a strong PCET donor and suggest that it should be capable of forming the early stage N–H bonds critical for N_2RR. Furthermore, DFT studies also suggest that the observed pK_a effect on N_2RR efficiency is attributable to the rate and thermodynamics, of Cp*_2Co protonation by the different anilinium acids. Inclusion of Cp*_2Co^+ as a co-catalyst in controlled potential electrolysis experiments leads to improved yields of NH_3. The data presented provide what is to our knowledge the first unambiguous demonstration of electrocatalytic nitrogen fixation by a molecular catalyst (up to 6.7 equiv NH_3 per Fe at −2.1 V vs Fc^(+/0))

    A primordial origin for the atmospheric methane of Saturn's moon Titan

    Full text link
    The origin of Titan's atmospheric methane is a key issue for understanding the origin of the Saturnian satellite system. It has been proposed that serpentinization reactions in Titan's interior could lead to the formation of the observed methane. Meanwhile, alternative scenarios suggest that methane was incorporated in Titan's planetesimals before its formation. Here, we point out that serpentinization reactions in Titan's interior are not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere, and would require a maximum D/H ratio in Titan's water ice 30% lower than the value likely acquired by the satellite during its formation, based on Cassini observations at Enceladus. Alternatively, production of methane in Titan's interior via radiolytic reactions with water can be envisaged but the associated production rates remain uncertain. On the other hand, a mechanism that easily explains the presence of large amounts of methane trapped in Titan in a way consistent with its measured atmospheric D/H ratio is its direct capture in the satellite's planetesimals at the time of their formation in the solar nebula. In this case, the mass of methane trapped in Titan's interior can be up to 1,300 times the current mass of atmospheric methane.Comment: Accepted for publication in Icaru
    • 

    corecore