71 research outputs found

    Optical dispersions through intracellular inhomogeneities

    Full text link
    Transport of intensity equation (TIE) exhibits a non-interferometric correlation between intensity and phase variations of intermediate fields (e.g., light and electron) in biological imaging. Previous TIE formulations have generally assumed a free space propagation of monochromatic coherent field functions crossing phase distributions along a longitudinal direction. Here, we modify the TIE with fractal (or self-similar) organization models based on intracellular refractive index turbulence. We then implement the TIE simulation over a broad range of fractal dimensions and wavelengths. Simulation results show how the intensity propagation through the spatial fluctuation of intracellular refractive index interconnects fractal-dimensionality with intensity dispersion (or transmissivity) within the picometer to micrometer wavelength range. In addition, we provide a spatial-autocorrelation of phase derivatives which allows the direct measurement and reconstruction of intracellular fractal profiles from optical and electron microscopy imaging.Comment: 22 pages, 18 figures, 4 table

    Fringe Pattern Analysis in Wavelet Domain

    Get PDF
    We present a full-field technique for single fringe pattern analysis based on wavelet transform. Wavelets technique is a powerful method that quantifies at different scales how spatial energy is distributed. In the wavelets domain, fringe pattern analysis requires spatial modulation by a high-frequency carrier. We realize the modulation process numerically by combining the fringe pattern and its quadrature generated analytically by spiral phase transform. The first application concerns the speckle denoising by thresholding the two-dimensional stationary wavelet transform (2D-swt) coefficients of the detail sub-bands. In the second application, the phase derivatives are estimated from the 1D-continuous wavelet transform (1D-cwt) and 2D-cwt analysis of the modulated fringe pattern by extracting the extremum scales from the localized spatial frequencies. In the third application, the phase derivatives distribution is evaluated from the modulated fringe pattern by the maximum ridge of the 2D-cwt coefficients. The final application concerns the evaluation of the optical phase map using two-dimensional discrete wavelet transform (2D-dwt) decomposition of the modulated fringe pattern. The optical phase is computed as the arctangent function of the ratio between the detail components (high-frequency sub-bands) and the approximation components (low-frequency sub-bands). The performance of these methods is tested on numerical simulations and experimental fringes

    Ice core records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate change variability in the North Pacific Rim

    Get PDF
    Monoterpene and isoprene secondary organic aerosol (SOA) tracers are reported for the first time in an Alaskan ice core to better understand the biological source strength before and after the industrial revolution in the Northern Hemisphere. We found significantly high concentrations of monoterpene- and isoprene-SOA tracers (e.g., pinic, pinonic, and 2-methylglyceric acids, 2-methylthreitol and 2-methylerythritol) in the ice core, which show historical trends with good correlation to each other since 1660s. They show positive correlations with sugar compounds (e.g., mannitol, fructose, glucose, inositol and sucrose), and anti-correlations with alpha-dicarbonyls (glyoxal and methylglyoxal) and fatty acids (e.g., C-18:1) in the same ice core. These results suggest similar sources and transport pathways for monoterpene- and isoprene-SOA tracers. In addition, we found that concentrations of C-5-alkene triols (e.g., 3-methyl-2,3,4-trihydroxy-1-butene, cis-2-methyl 1,3,4-trihydroxy-1-butene and trans-2-methyl-1,3,4-trihydroxy-1-butene) in the ice core have increased after the Great Pacific Climate Shift (late 1970s). They show positive correlations with a-dicarbonyls and fatty acids (e.g., C-18:1) in the ice core, suggesting that enhanced oceanic emissions of biogenic organic compounds through the marine boundary layer are recorded in the ice core from Alaska. Photochemical oxidation process for these monoterpene- and isoprene-/sesquiterpene-SOA tracers are suggested to be linked with the periodicity of multi-decadal climate oscillations and retreat of sea ice in the Northern Hemisphere. (C) 2015 Elsevier Ltd. All rights reserved

    Multi-Physical Parameter Cross-Sectional Imaging of Quantitative Phase and Fluorescence by Integrated Multimodal Microscopy

    Get PDF
    Integrated multimodal cross-sectional or volumetric imaging techniques give us fruitful information to understand the behavior or status of target objects such as biological samples. Most of the reported systems for this purpose are either time consuming due to scanning or use additional reference beams such as in interferometry. Therefore, fast, simple, highly efficient, and powerful multimodal imaging systems that can perform cross-sectional imaging with simple algorithms are worth to be investigated. In this paper, a multimodal technique for cross-sectional quantitative phase and fluorescence imaging with computational microscopy is presented. We combine cross-sectional fluorescence and quantitative phase imaging by using the transport of intensity equation (TIE) and numerical wave propagation. The amplitude and phase of the fluorescence light wave with partially spatial coherence are obtained from three defocused intensity patterns. The proposed hybrid imaging system is simple, compact, and non-iterative. We present experimental results of microbeads and fluorescent proteinlabeled living cells of the moss Physcomitrella patensto demonstrate the performance of the proposed imaging system

    Three-dimensional fluorescence imaging using the transport of intensity equation

    Get PDF
    We propose a nonscanning three-dimensional (3-D) fluorescence imaging technique using the transport of intensity equation (TIE) and free-space Fresnel propagation. In this imaging technique, a phase distribution corresponding to defocused fluorescence images with a point-light-source-like shape is retrieved by a TIE-based phase retrieval algorithm. From the obtained phase distribution, and its corresponding amplitude distribution, of the defocused fluorescence image, various images at different distances can be reconstructed at the desired plane after Fresnel propagation of the complex wave function. Through the proposed imaging approach, the 3-D fluorescence imaging can be performed in multiple planes. The fluorescence intensity images are captured with the help of an electrically tunable lens; hence, the imaging technique is free from motion artifacts. We present experimental results corresponding to microbeads and a biological sample to demonstrate the proposed 3-D fluorescence imaging technique

    Roadmap on holography

    Get PDF
    From its inception holography has proven an extremely productive and attractive area of research. While specific technical applications give rise to 'hot topics', and three-dimensional (3D) visualisation comes in and out of fashion, the core principals involved continue to lead to exciting innovations in a wide range of areas. We humbly submit that it is impossible, in any journal document of this type, to fully reflect current and potential activity; however, our valiant contributors have produced a series of documents that go no small way to neatly capture progress across a wide range of core activities. As editors we have attempted to spread our net wide in order to illustrate the breadth of international activity. In relation to this we believe we have been at least partially successful.This work was supported by Ministerio de EconomĂ­a, Industria y Competitividad (Spain) under projects FIS2017-82919-R (MINECO/AEI/FEDER, UE) and FIS2015-66570-P (MINECO/FEDER), and by Generalitat Valenciana (Spain) under project PROMETEO II/2015/015

    Preface

    No full text

    Visualization2.mp4

    No full text
    Reflected signal in optical coherence microscope with and without digital phase conjugatio
    • 

    corecore