16 research outputs found

    Direct machining of curved trenches in silicon with femtosecond accelerating beams

    No full text
    International audienceControl of the longitudinal profile of ablated structures during laser processing is a key technological requirement. We report here on the direct machining of trenches in silicon with circular profiles using femtosecond accelerating beams. We describe the ablation process based on an intensity threshold model, and show how the depth of the trenches can be predicted in the framework of a caustic description of the beam

    Caustics and Rogue Waves in an Optical Sea

    Full text link
    There are many examples in physics of systems showing rogue wave behaviour, the generation of high amplitude events at low probability. Although initially studied in oceanography, rogue waves have now been seen in many other domains, with particular recent interest in optics. Although most studies in optics have focussed on how nonlinearity can drive rogue wave emergence, purely linear effects have also been shown to induce extreme wave amplitudes. In this paper, we report a detailed experimental study of linear rogue waves in an optical system, using a spatial light modulator to impose random phase structure on a coherent optical field. After free space propagation, different random intensity patterns are generated, including partially-developed speckle, a broadband caustic network, and an intermediate pattern with characteristics of both speckle and caustic structures. Intensity peaks satisfying statistical criteria for rogue waves are seen especially in the case of the caustic network, and are associated with broader spatial spectra. In addition, the electric field statistics of the intermediate pattern shows properties of an optical sea with near-Gaussian statistics in elevation amplitude, and trough-to-crest statistics that are near-Rayleigh distributed but with an extended tail where a number of rogue wave events are observed.Comment: 10 pages, 5 figures, to be published in Scientific Report

    Spherical light, arbitrary nonparaxial accelerating beams and femtosecond laser micromachining of curved profiles

    No full text
    International audienceWe review our recent results applying caustics wave theory to the generation of arbitrary curved accelerating beams and their use in the field of femtosecond laser materials processing. We report experimental realization of highly nonparaxial accelerating beams with circular, parabolic and quartic trajectories that extend over more than 95 degrees of arc as well as spherical optical fields. We also report femtosecond laser curved edge profiling

    Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams

    No full text
    International audienceWe report femtosecond laser micromachining of micron-size curved structures using tailored accelerating beams. We report surface curvatures as small as 70 Όm in both diamond and silicon, which demonstrates the wide applicability of the technique to materials that are optically transparent or opaque at the pump laser wavelength. We also report the machining of curved trenches in silicon. Our results are consistent with an ablation-threshold model based on calculated local beam intensity, and we also observe asymmetric debris deposition which is interpreted in terms of the optical properties of the incident accelerating beam

    Filamentation of high-angle nondiffracting beams and applications to ultrafast laser processing

    No full text
    International audienceWe report on filamentation of nondiffracting beams and show that the intense light-matter interaction regime achieved on long distances allows for an enhanced control on ultrashort laser deep ablation

    Femtosecond laser material processing with nondiffracting light

    No full text
    International audienceAlthough versatile and widely used, femtosecond laser micro-nanomachining faces a challenge for the fabrication of high aspect ratio or deep structures. The control of the profile along the longitudinal dimension is extremely difficult. In this context, our approach is based on controlling the direction of light rather than shaping the intensity pattern in one plane. Here we review our recent work in this field using Bessel beams and accelerating beams. In Bessel beams, light propagates along the generatrix of a cone, with a fixed radial wavevector. Contrary to Gaussian beams, the femtosecond filamentation regime of Bessel beams can be stationary, and can generate extended plasma tracks in dielectrics. This allowed us to generate nanochannels in glass with aspect ratio up to 100:1 [1]. Numerical simulations of the nonlinear propagation in this regime show the importance of the conical structure in generating extremely dense plasmas [2]. Airy beams and more generally accelerating beams constitute another family of beams that possess quasi-nondiffracting behaviour and their nonlinear propagation can also be stationary. Their primary intensity lobe propagates along a curved trajectory that can be arbitrarily shaped even in the nonparaxial regime. Since this lobe is adjacent to a region where no light propagates, accelerating beams can be used for direct curved edge profiling and trench processing in transparent and opaque materials [3,4]. Our results show that controlling the linear and nonlinear propagation of ultrashort femtosecond laser pulses by nondiffracting beams is a key new technological approach for laser processing

    Faisceaux non-diffractants et accélérants. Applications à la micro et nanostructuration par laser femtoseconde

    No full text
    National audienceLors des processus d'ablation par laser, le contrÎle des profils des flancs d'ablation est un aspect important. Nous avons récemment développé une approche permettant de répondre à ce problÚme, à partir du contrÎle de la direction de la lumiÚre dans des faisceaux femtoseconde. Nous adressons des modes particuliers (stationnaires) de la filamentation dans les diélectriques afin de contrÎler la répartition spatiale du dépÎt d'énergie dans la matiÚre. Des structures à haut rapport de forme et l'usinage direct de profils courbes seront présentés

    Validating AU Microscopii d with Transit Timing Variations

    Full text link
    AU Mic is a young (22 Myr) nearby exoplanetary system that exhibits excess TTVs that cannot be accounted for by the two known transiting planets nor stellar activity. We present the statistical "validation" of the tentative planet AU Mic d (even though there are examples of "confirmed" planets with ambiguous orbital periods). We add 18 new transits and nine midpoint times in an updated TTV analysis to prior work. We perform the joint modeling of transit light curves using EXOFASTv2 and extract the transit midpoint times. Next, we construct an O-C diagram and use Exo-Striker to model the TTVs. We generate TTV log-likelihood periodograms to explore possible solutions for the period of planet d and then follow those up with detailed TTV and RV MCMC modeling and stability tests. We find several candidate periods for AU Mic d, all of which are near resonances with AU Mic b and c of varying order. Based on our model comparisons, the most-favored orbital period of AU Mic d is 12.73596+/-0.00793 days (T_{C,d}=2458340.55781+/-0.11641 BJD), which puts the three planets near a 4:6:9 mean-motion orbital resonance. The mass for d is 1.053+/-0.511 M_E, making this planet Earth-like in mass. If confirmed, AU Mic d would be the first known Earth-mass planet orbiting a young star and would provide a valuable opportunity in probing a young terrestrial planet's atmosphere. Additional TTV observation of the AU Mic system are needed to further constrain the planetary masses, search for possible transits of AU Mic d, and detect possible additional planets beyond AU Mic c.Comment: 89 pages, 35 figures, 34 tables. Redid EXOFASTv2 transit modeling to recover more reasonable stellar posteriors, so redid Exo-Striker TTV modeling for consistency. Despite these changes, the overall results remain unchanged: the 12-7-day case is still the most favored. Submitted to AAS Journals on 2023 Feb 9t

    Validating AU Microscopii d with Transit Timing Variations

    Get PDF
    AU Mic is a young (22 Myr), nearby exoplanetary system that exhibits excess transit timing variations (TTVs) that cannot be accounted for by the two known transiting planets nor stellar activity. We present the statistical “validation” of the tentative planet AU Mic d (even though there are examples of “confirmed” planets with ambiguous orbital periods). We add 18 new transits and nine midpoint times in an updated TTV analysis to prior work. We perform the joint modeling of transit light curves using EXOFASTv2 and extract the transit midpoint times. Next, we construct an O − C diagram and use Exo-Striker to model the TTVs. We generate TTV log-likelihood periodograms to explore possible solutions for d’s period, then follow those up with detailed TTV and radial velocity Markov Chain Monte Carlo modeling and stability tests. We find several candidate periods for AU Mic d, all of which are near resonances with AU Mic b and c of varying order. Based on our model comparisons, the most-favored orbital period of AU Mic d is 12.73596 ± 0.00793 days ( T _C _,d = 2458340.55781 ± 0.11641 BJD), which puts the three planets near 4:6:9 mean-motion resonance. The mass for d is 1.053 ± 0.511 M _⊕ , making this planet Earth-like in mass. If confirmed, AU Mic d would be the first known Earth-mass planet orbiting a young star and would provide a valuable opportunity in probing a young terrestrial planet’s atmosphere. Additional TTV observations of the AU Mic system are needed to further constrain the planetary masses, search for possible transits of AU Mic d, and detect possible additional planets beyond AU Mic c

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    corecore