83 research outputs found
Imaging of 3D tissue-engineered models of oral cancer using 890 and 1300 nm optical coherence tomography
© 2015, Nizhny Novgorod State Medical Academy. All rights reserved. Optical coherence tomography (OCT) generates its primary form of contrast from elastic backscatter. It is now the gold standard technique for retinal screening and is emerging rapidly in cardiovascular research however it remains a research goal to establish it to the same degree in epithelial cancer detection and diagnosis. In this report we compare two different OCT systems: an 890 nm spectrometer-based OCT system with 2.5 µm axial resolution and a 1300 nm swept-source OCT system with 7.5 µm axial resolution to determine the effect of these different OCT parameters on the endogenous backscatter contrast of dysplastic/malignant oral mucosa models relative to normal mucosa models. Tissueengineered oral mucosa models constructed with a dysplastic cell line (DOK), a malignant cell line (Cal27) and normal cell were imaged with both of these OCT platforms and comparisons made with regard to apparent epithelial thickness and the visibility of the epithelium relative to the underlying stroma. For the Cal27’s, hematoxylin and eosin staining confirmed the formation of a keratinized layer superficial to a thickened layer of viable cells on top of the stroma. The keratinized layer presented as a hyperreflective thickened layer superficial to a darker region on both OCT platforms. The keratinized layer caused a steep fall in signal at 890 nm, making it difficult to visualise underlying structures, whereas 1300 nm OCT clearly visualized both the epithelial cells and the stroma lying beneath. For the DOK cells, hematoxylin and eosin staining confirmed the formation of an epithelial layer frequently presenting an abnormal morphology especially at the epidermal/stromal junction, with features such as infiltrating, bulbous rete pegs. These were more clearly visualized under 890 nm OCT. These observations show that 890 nm OCT retains some of its known advantages of higher contrast between anatomical tissue layers when used to observe dysplastic and malignant 3D oral mucosa constructs. However 1300 nm OCT is confirmed to possess a greater ability to image the full thickness of the model epithelia and in particular it is more suited to imaging through the keratinized layer
Meat freshness revealed by visible to near-infrared spectroscopy and principal component analysis
Increasing concerns about adulterated meat encouraged industry looking for new non-invasive methods for rapid accurate meat quality assessment. Main meat chromophores (myoglobin, oxy-myoglobin, fat, water, collagen) are characterized by close comparable absorption in visible to near-infrared (NIR) spectral region. Therefore, structural and compositional variations in meat may lead to relative differences in the absorption of light. Utilizing typical fiber-optic probes and integrating sphere, a degradation of pork samples freshness was observed at room temperature referring to the relative changes in absorbance of main meat chromophores. The application of principal component analysis (PCA) used for examination of measured absorbance spectra revealed more detailed sub-stages of freshness, which are not observed by the conventional analysis of the reflectance spectra. The results show a great potential of the combined application of optical-NIR spectroscopy with complementary use of PCA approach for assessing meat quality and monitoring relative absorbance alternation of oxymyoglobin and myoglobin in visible, and fat, water, collagen in NIR spectral ranges
Translating optical coherence tomography technologies from clinical studies to botany : real time imaging of long-distance signaling in plants
The time has now come to expand the use of optical coherence tomography and apply it in botany where the technology’s key advantages enable visualization of plant’s communication as it was never done before
Enhancing African coelacanth monitoring using environmental DNA
Coelacanths are rare, elusive, ancient lobe-finned fish species, residing in poorly accessible tropical marine caves and requiring close monitoring and protection. Environmental DNA (eDNA) approaches are being increasingly applied in the detection of rare and threatened species. Here we devise an eDNA approach to detect the presence of African coelacanths (Latimeria chalumnae) off the eastern coast of South Africa. Novel coelacanth-specific primers were designed to avoid cross-amplification with other fish lineages and validated for specificity. These primers were tested on field samples in conjunction with remotely operated vehicle (ROV) visual surveys. Samples were collected from a known coelacanth habitat and two adjacent slope habitats a few kilometres apart. Coelacanth DNA was detected from three of 15 samples collected. Two of these positive eDNA detections occurred in the presence of coelacanths, as evidenced by ROV footage, while the third positive detection was at a station where coelacanths had not been previously observed. eDNA detections are discussed in relation to the species’ metabolic rate, movement patterns and population size, as well as the local oceanographic features. We demonstrate that eDNA can provide a non-invasive method to extend the knowledge of coelacanth distribution ranges and boost research efforts around these iconic fishes
Potential application of PS-OCT in the safety assessment of non-steroidal topical creams for atopic dermatitis treatment
Crisaborole 2% ointment is a non-steroidal treatment for mild-moderate atopic dermatitis (AD) and may produce fewer adverse effects than topical corticosteroids (TCS). We used PS-OCT to quantify dermal collagen at baseline and after 29 days of treatment with crisaborole and betamethasone valerate (BMV), in 32 subjects. PS-OCT detected a mean increase 1 × 10-6, 95% CI (6.3, 1.37) × 10-6 in dermal birefringence following TCS use (p < 0.0001, ad-hoc, not powered), whereas a change of -4 × 10-6, 95% CI (-32, 24) × 10-6 was detected for crisaborole (p = 0.77, ad-hoc, not powered). These results could suggest a differential effect on dermal collagen between the two compounds. PS-OCT may thus find an important role in safety assessment of novel AD treatment’ and larger trials are warranted
Novel biophysical skin biomarkers discriminate topical anti‐inflammatory treatments based on their potential for local adverse effects
Background
Topical corticosteroids (TCS) are efficacious treatments for inflammatory skin conditions, however, there is a risk of adverse effects; understanding how best to use these treatments is an unmet research priority shared by patients and healthcare professionals.
Objectives
To develop non-invasive biomarkers of local adverse effects to facilitate the optimisation of topical therapy.
Methods
An observer-blind randomised within-subject controlled trial in atopic dermatitis patients was undertaken (NCT04194814) comparing betamethasone valerate 0.1% cream (BMV) to a non-steroidal anti-inflammatory treatment, crisaborole 2% ointment (CRB). Participants underwent 4 weeks twice-daily treatment with CRB on one forearm and BMV on the other (left/right randomised). Skin properties were assessed on days 1, 15, 29 of treatment and again on day 57, including imaging of skin microstructure using Optical Coherence Tomography (OCT) and Attenuated Total Reflectance (ATR)-Fourier Transform Infrared (FTIR) spectroscopic assessment of stratum corneum molecular structure. The primary outcome was the difference in the change in epidermal thickness from days 1 to 29.
Results
Thirty-seven participants received the first dose, of which 32 completed the study (all 37 were included in the analysis). Pathologic epidermal thinning at day 29 was significantly greater (p < 0.0001) at sites treated with BMV (−31.66; 95% confidence interval: −35.31, −28.01 µm) compared to CRB (−13.76; −17.42, −10.10 µm). From a panel of exploratory biomarkers, superficial plexus depth and stratum corneum carboxyl group levels had the greatest ability to discriminate the effects of the TCS treatment (p < 0.0001).
Conclusions
BMV induced 2.3x more pathologic epidermal thinning than CRB after 4 weeks of treatment, suggesting that CRB may be more appropriate for longer-term, proactive-based, treatment strategies where the risks of adverse effects are greatest. By monitoring treatment effects using OCT and ATR-FTIR spectroscopy, two new non-invasive biomarkers of skin health have been identified with the potential to help optimise future safe treatment strategies
In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching.
Stratum corneum and epidermal layers change in terms of thickness and roughness with gender, age and anatomical site. Knowledge of the mechanical and tribological properties of skin associated with these structural changes are needed to aid in the design of exoskeletons, prostheses, orthotics, body mounted sensors used for kinematics measurements and in optimum use of wearable on-body devices. In this case study, optical coherence tomography (OCT) and digital image correlation (DIC) were combined to determine skin surface strain and sub-surface deformation behaviour of the volar forearm due to natural tissue stretching. The thickness of the epidermis together with geometry changes of the dermal-epidermal junction boundary were calculated during change in the arm angle, from flexion (90°) to full extension (180°). This posture change caused an increase in skin surface Lagrange strain, typically by 25% which induced considerable morphological changes in the upper skin layers evidenced by reduction of epidermal layer thickness (20%), flattening of the dermal-epidermal junction undulation (45-50% reduction of flatness being expressed as Ra and Rz roughness profile height change) and reduction of skin surface roughness Ra and Rz (40-50%). The newly developed method, DIC combined with OCT imaging, is a powerful, fast and non-invasive methodology to study structural skin changes in real time and the tissue response provoked by mechanical loading or stretching
Laser-induced modification of the patellar ligament tissue: comparative study of structural and optical changes
The effects of non-ablative infrared (IR) laser treatment of collagenous tissue have been commonly interpreted in terms of collagen denaturation spread over the laser-heated tissue area. In this work, the existing model is refined to account for the recently reported laser-treated tissue heterogeneity and complex collagen degradation pattern using comprehensive optical imaging and calorimetry toolkits. Patella ligament (PL) provided a simple model of type I collagen tissue containing its full structural content from triple-helix molecules to gross architecture. PL ex vivo was subjected to IR laser treatments (laser spot, 1.6 mm) of equal dose, where the tissue temperature reached the collagen denaturation temperature of 60 ± 2°C at the laser spot epicenterin the first regime, and was limited to 67 ± 2°C in the second regime. The collagen network was analyzed versus distance from the epicenter. Experimental characterization of the collagenous tissue at all structural levels included cross-polarization optical coherence tomography, nonlinear optical microscopy, light microscopy/histology, and differential scanning calorimetry. Regressive rearrangement of the PL collagen network was found to spread well outside the laser spot epicenter (>2 mm) and was accompanied by multilevel hierarchical reorganization of collagen. Four zones of distinct optical and morphological properties were identified, all elliptical in shape, and elongated in the direction perpendicular to the PL long axis. Although the collagen transformation into a random-coil molecular structure was occasionally observed, it was mechanical integrity of the supramolecular structures that was primarily compromised. We found that the structural rearrangement of the collagen network related primarily to the heat-induced thermo-mechanical effects rather than molecular unfolding. The current body of evidence supports the notion that the supramolecular collagen structure suffered degradation of various degrees, which gave rise to the observed zonal character of the laser-treated lesion
Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia
Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue. Copyright
- …