310 research outputs found

    Calculation of the effect of random superfluid density on the temperature dependence of the penetration depth

    Full text link
    Microscopic variations in composition or structure can lead to nanoscale inhomogeneity in superconducting properties such as the magnetic penetration depth, but measurements of these properties are usually made on longer length scales. We solve a generalized London equation with a non-uniform penetration depth, lambda(r), obtaining an approximate solution for the disorder-averaged Meissner effect. We find that the effective penetration depth is different from the average penetration depth and is sensitive to the details of the disorder. These results indicate the need for caution when interpreting measurements of the penetration depth and its temperature dependence in systems which may be inhomogeneous

    Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets

    Get PDF
    We consider a dependent thinning of a regular point process with the aim of obtaining aggregation on the large scale and regularity on the small scale in the resulting target point process of retained points. Various parametric models for the underlying processes are suggested and the properties of the target point process are studied. Simulation and inference procedures are discussed when a realization of the target point process is observed, depending on whether the thinned points are observed or not. The paper extends previous work by Dietrich Stoyan on interrupted point processes

    Bayesian spatial extreme value analysis of maximum temperatures in County Dublin, Ireland

    Get PDF
    In this study, we begin a comprehensive characterisation of temperature extremes in Ireland for the period 1981-2010. We produce return levels of anomalies of daily maximum temperature extremes for an area over Ireland, for the 30-year period 1981-2010. We employ extreme value theory (EVT) to model the data using the generalised Pareto distribution (GPD) as part of a three-level Bayesian hierarchical model. We use predictive processes in order to solve the computationally difficult problem of modelling data over a very dense spatial field. To our knowledge, this is the first study to combine predictive processes and EVT in this manner. The model is fit using Markov chain Monte Carlo (MCMC) algorithms. Posterior parameter estimates and return level surfaces are produced, in addition to specific site analysis at synoptic stations, including Casement Aerodrome and Dublin Airport. Observational data from the period 2011-2018 is included in this site analysis to determine if there is evidence of a change in the observed extremes. An increase in the frequency of extreme anomalies, but not the severity, is observed for this period. We found that the frequency of observed extreme anomalies from 2011-2018 at the Casement Aerodrome and Phoenix Park synoptic stations exceed the upper bounds of the credible intervals from the model by 20% and 7% respectively

    Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis

    Get PDF
    Acknowledgments We thank the European Research Council (ERC) (project GA 335910 VEWA) and Natural Environment Research Council (NERC) (project NE/K000268/1) for funding and the Airborne Research and Survey Facility for conducting the aerial survey. The data used are available from the authors. In addition, we would like to thank the additional support from Audrey Innes for the sample analysis and Maria Blumstock and Mike Kennedy for assisting with field work.Peer reviewedPublisher PD

    Generalized Whittle-MatEˊ\acute{\text{E}}rn random field as a model of correlated fluctuations

    Full text link
    This paper considers a generalization of Gaussian random field with covariance function of Whittle-Mateˊ\acute{\text{e}}rn family. Such a random field can be obtained as the solution to the fractional stochastic differential equation with two fractional orders. Asymptotic properties of the covariance functions belonging to this generalized Whittle-Mateˊ\acute{\text{e}}rn family are studied, which are used to deduce the sample path properties of the random field. The Whittle-Mateˊ\acute{\text{e}}rn field has been widely used in modeling geostatistical data such as sea beam data, wind speed, field temperature and soil data. In this article we show that generalized Whittle-Mateˊ\acute{\text{e}}rn field provides a more flexible model for wind speed data.Comment: 22 pages, 10 figures, accepted by Journal of Physics

    Outlining multi-purpose forest inventories to assess the ecosystem approach in forestry

    Get PDF
    A summary and discussion of selected published results on the current and potential role of forest inventories (with particular reference to the national ones) are presented in the light of the challenges posed by society and policy decisions in the environmental sector. The analysis concentrates mainly on the ecological and socio-economic aspects of the question and on forest inventories’ potential contribution to achieving sustainable forest management.L'articolo è diponibile sul sito dell'editore wwww.tandf.co.uk/journals

    Gaussian Process Modelling for Uncertainty Quantification in Convectively-Enhanced Dissolution Processes in Porous Media

    Get PDF
    Numerical groundwater flow and dissolution models of physico-chemical processes in deep aquifers are usually subject to uncertainty in one or more of the model input parameters. This uncertainty is propagated through the equations and needs to be quantified and characterised in order to rely on the model outputs. In this paper we present a Gaussian process emulation method as a tool for performing uncertainty quantification in mathematical models for convection and dissolution processes in porous media. One of the advantages of this method is its ability to significantly reduce the computational cost of an uncertainty analysis, while yielding accurate results, compared to classical Monte Carlo methods. We apply the methodology to a model of convectively-enhanced dissolution processes occurring during carbon capture and storage. In this model, the Gaussian process methodology fails due to the presence of multiple branches of solutions emanating from a bifurcation point, i.e., two equilibrium states exist rather than one. To overcome this issue we use a classifier as a precursor to the Gaussian process emulation, after which we are able to successfully perform a full uncertainty analysis in the vicinity of the bifurcation point
    corecore