7 research outputs found

    Characterization of a Broadly Reactive Monoclonal Antibody against Norovirus Genogroups I and II: Recognition of a Novel Conformational Epitope▿

    No full text
    Norovirus, which belongs to the family Caliciviridae, is one of the major causes of nonbacterial acute gastroenteritis in the world. The main human noroviruses are of genogroup I (GI) and genogroup II (GII), which were subdivided further into at least 15 and 18 genotypes (GI/1 to GI/15 and GII/1 to GII/18), respectively. The development of immunological diagnosis for norovirus had been hindered by the antigen specificity of the polyclonal antibody. Therefore, several laboratories have produced broadly reactive monoclonal antibodies, which recognize the linear GI and GII cross-reactive epitopes or the conformational GI-specific epitope. In this study, we characterized the novel monoclonal antibody 14-1 (MAb14-1) for further development of the rapid immunochromatography test. Our results demonstrated that MAb14-1 could recognize 15 recombinant virus-like particles (GI/1, 4, 8, and 11 and GII/1 to 7 and 12 to 15) and showed weak affinity to the virus-like particle of GI/3. This recognition range is the broadest of the existing monoclonal antibodies. The epitope for MAb14-1 was identified by fragment, sequence, structural, and mutational analyses. Both terminal antigenic regions (amino acid positions 418 to 426 and 526 to 534) on the C-terminal P1 domain formed the conformational epitope and were in the proximity of the insertion region (positions 427 to 525). These regions contained six amino acids responsible for antigenicity that were conserved among genogroup(s), genus, and Caliciviridae. This epitope mapping explained the broad reactivity and different titers among GI and GII. To our knowledge, we are the first group to identify the GI and GII cross-reactive monoclonal antibody, which recognizes the novel conformational epitope. From these data, MAb14-1 could be used further to develop immunochromatography

    Periostin promotes chronic allergic inflammation in response to Th2 cytokines

    No full text
    Allergic inflammation triggered by exposure of an allergen frequently leads to the onset of chronic inflammatory diseases such as atopic dermatitis (AD) and bronchial asthma. The mechanisms underlying chronicity in allergic inflammation remain unresolved. Periostin, a recently characterized matricellular protein, interacts with several cell surface integrin molecules, providing signals for tissue development and remodeling. Here we show that periostin is a critical mediator for the amplification and persistence of allergic inflammation using a mouse model of skin inflammation. Th2 cytokines IL-4 and IL-13 stimulated fibroblasts to produce periostin, which interacted with αv integrin, a functional periostin receptor on keratinocytes, inducing production of proinflammatory cytokines, which consequently accelerated Th2-type immune responses. Accordingly, inhibition of periostin or αv integrin prevented the development or progression of allergen-induced skin inflammation. Thus, periostin sets up a vicious circle that links Th2-type immune responses to keratinocyte activation and plays a critical role in the amplification and chronicity of allergic skin inflammation

    Multiply charged ions

    No full text
    Formation, characteristics of, and applications rising doubly and multiply charged ions are reviewed in the present article. The main emphasis is on medium- to large-sized molecules, from the point-of-view of organic, physico-organic, and bioorganic mass spectrometry. Multiply charged species can be studied by all conventional mass spectrometric techniques. Those techniques and reaction types that are particularly relevant to multiply charged ions are discussed in some detail in Section III. Studies on small- to medium-sized molecules are discussed in Section N. A particularly interesting aspect, the distinction of doubly charged isomeric ions, is also treated here. Multiply charged ions of large (bio-)molecules are discussed in Section V. This area is fast expanding, mainly due to the spread of electrospray ionization. Fragmentation and conformation of multiply protonated peptides is discussed in detail
    corecore