5,863 research outputs found

    Late movement of basin-edge lobate scarps on Mercury

    Get PDF
    Basin-edge lobate scarps are a sub-type of tectonic shortening structure on the surface of Mercury that have formed at the edge of volcanic units that fill or partly fill impact basins. We have performed a global survey of these features and find that they are widespread in basins across the planet. We obtained model ages from crater size–frequency distribution analysis for a subset of our surveyed basins, for both the smooth plains infill and for the last resolvable tectonic activity on the associated basin-edge scarps. Our results indicate that some of these lobate scarps were still accumulating strain in the late Mansurian (approximately 1 Ga). From a photogeological assessment, we find that the orientations of these basin-edge lobate scarps are similar to those reported for the global population of lobate scarps in earlier studies, appearing to align ∌north–south at low latitudes and ∌east–west at higher latitudes. However, reassessing these landforms’ orientation with artificially illuminated topographic data does not allow us to rule out the effect of illumination bias. We propose that these landforms, the result of crustal shortening in response to global contraction, formed along the interface between the basin floor and the smooth plains unit, which acted as a mechanical discontinuity along which shortening strains were concentrated

    Multispectral satellite imaging improves detection of large individual fossils

    Get PDF
    Palaeontological field surveys in remote regions are a challenge, because of uncertainty in finding new specimens, high transportation costs, risks for the crew and a long time commitment. The effort can be facilitated by using high-resolution satellite imagery. Here we present a new opportunity to investigate remote fossil localities in detail, mapping the optical signature of individual fossils. We explain a practical workflow for detecting fossils using remote-sensing platforms and cluster algorithms. We tested the method within the Petrified Forest National Park, where fossil logs are sparse in a large area with mixed lithologies. We ran both unsupervised and supervised classifications, obtaining the best estimations for the presence of fossil logs using the likelihood and spectral angle mapper algorithms. We recognized general constraints and described logical and physical pros and cons of each estimated map. We also explained how the outcomes should be critically evaluated with consistent accuracy tests. Instead of searching for fossiliferous outcrops, our method targets single fossil specimens (or highly condensed accumulations), obtaining a significant increase in potential efficiency and effectiveness of field surveys. When repeatedly applied to the same region over time, it could also be useful for monitoring palaeontological heritage localities. Most importantly, the method here described is feasible, easily applicable to both fossil logs and bones, and represents a step towards standard best practices for applying remote sensing in the palaeontological field

    The effects of the target material properties and layering on the crater chronology: the case of Raditladi and Rachmaninoff basins on Mercury

    Full text link
    In this paper we present a crater age determination of several terrains associated with the Raditladi and Rachmaninoff basins. These basins were discovered during the first and third MESSENGER flybys of Mercury, respectively. One of the most interesting features of both basins is their relatively fresh appearance. The young age of both basins is confirmed by our analysis on the basis of age determination via crater chronology. The derived Rachmaninoff and Raditladi basin model ages are about 3.6 Ga and 1.1 Ga, respectively. Moreover, we also constrain the age of the smooth plains within the basins' floors. This analysis shows that Mercury had volcanic activity until recent time, possibly to about 1 Ga or less. We find that some of the crater size-frequency distributions investigated suggest the presence of a layered target. Therefore, within this work we address the importance of considering terrain parameters, as geo-mechanical properties and layering, into the process of age determination. We also comment on the likelihood of the availability of impactors able to form basins with the sizes of Rachmaninoff and Raditladi in relatively recent times.Comment: Accepted by PSS, to appear on MESSENGER Flybys special issu

    3D Extension at Plate Boundaries Accommodated by Interacting Fault Systems

    Get PDF
    Complex patterns of normal faults with multiple orientations and/or highly curved shapes have been traditionally explained by successive tectonic phases of 2-dimensional deformation. Alternatively, multiple fault sets have been proposed to develop simultaneously and in orthorhombic symmetry during a single phase of 3-dimensional deformation. We use analogue models of normal faults to demonstrate that, without the influence of pre-existing structures, 3D extension is preferentially accommodated by the alternate, rather than simultaneous, development of faults with different trends. By means of stress-driven interactions, 3D deformation can be partitioned into coupled systems of normal faults, which display geometries commonly observed in tectonic settings affected by interacting plate boundaries. Under radial extension, deformation is accommodated by major curvilinear grabens coupled with minor perpendicular faults, resulting in the triple junctions of grabens observed in Afar. On the other hand, the alternate development of perpendicular faults accommodates synchronous bi-directional and mutually perpendicular extension, giving the same fault pattern observed in the Barents Sea rift-shear margin

    Dating long thrust systems on Mercury: new clues on the thermal evolution of the planet

    Get PDF
    The global tectonics of Mercury is dominated by contractional features mainly represented by lobate scarps, high relief ridges, and wrinkle ridges. These structures are the expression of thrust faults and are linear or arcuate features widely distributed on Mercury. Locally, these structures are arranged in long systems characterized by a preferential orientation and non-random spatial distribution. In this work we identified five thrust systems, generally longer than 1000 km. They were named after the main structure or crater encompassed by the system as: Thakur, Victoria, Villa Lobos, Al-Hamadhani, and Enterprise. In order to gain clues about their formation, we dated them using the buffered crater counting technique, which can be applied to derive the ages of linear landforms such as faults, ridges and channels. To estimate the absolute age for the end of the thrust system's activity, we applied both Le Feuvre and Wieczorek Production Function and Neukum Production Functions. Moreover, to further confirm the results obtained with the buffered crater counting method, the classic stratigraphic approach has been adopted, in which a faulted and an unfaulted craters were dated for each system. The results gave consistent ages and suggested that the most movements along major structures all over Mercury most likely ended at about 3.6–3.8 Ga. This gives new clues to better understand the tectonics of the planet and, therefore, its thermal evolution. Indeed, the early occurrence of tectonic activity in the planet's history, well before than predicted by the thermophysical models, coupled with the orientation and spatial distribution of the thrust systems, suggests that other processes beside global contraction, like mantle downwelling or tidal despinning, could have contributed to the first stage of the planet's history. Keywords: Mercury, Thrust systems, Crater counting, Thermal evolution, Planetary geology, Structural geolog

    3D extension at plate boundaries accommodated by interacting fault systems

    Get PDF
    Complex patterns of normal faults with multiple orientations and/or highly curved shapes have been traditionally explained by successive tectonic phases of 2-dimensional deformation. Alternatively, multiple fault sets have been proposed to develop simultaneously and in orthorhombic symmetry during a single phase of 3-dimensional deformation. We use analogue models of normal faults to demonstrate that, without the influence of pre-existing structures, 3D extension is preferentially accommodated by the alternate, rather than simultaneous, development of faults with different trends. By means of stress-driven interactions, 3D deformation can be partitioned into coupled systems of normal faults, which display geometries commonly observed in tectonic settings affected by interacting plate boundaries. Under radial extension, deformation is accommodated by major curvilinear grabens coupled with minor perpendicular faults, resulting in the triple junctions of grabens observed in Afar. On the other hand, the alternate development of perpendicular faults accommodates synchronous bi-directional and mutually perpendicular extension, giving the same fault pattern observed in the Barents Sea rift-shear margin

    Suspended Multifunctional Nanocellulose as Additive for Mortars

    Get PDF
    Cellulose derivatives have found significant applications in composite materials, mainly because of the increased mechanical performance they ensure. When added to cement-based materials, either in the form of nanocrystals, nanofibrils or micro/nanofibers, cellulose acts on the mixture with fresh and hardened properties, affecting rheology, shrinkage, hydration, and the resulting mechanical properties, microstructure, and durability. Commercial cotton wool was selected as starting material to produce multifunctional nanocelluloses to test as additives for mortars. Cotton wool was oxidized to oxidized nanocellulose (ONC), a charged nanocellulose capable of electrostatic interaction, merging cellulose and nanoparticles properties. Oxidized nanocellulose (ONC) was further functionalized by a radical-based mechanism with glycidyl methacrylate (GMA) and with a mixture of GMA and the crosslinking agent ethylene glycol dimethacrylate (EGDMA) affording ONC-GMA and ONC-GMA-EGDMA, both multifunctional-charged nanocellulose merging cellulose and bound acrylates properties. In this work, only ONC was found to be properly suitable for suspension and addition to a commercial mortar to assess the variation in mechanical properties and water-mortar interactions as a consequence of the modified microstructure obtained. The addition of oxidized nanocellulose caused an alteration of mortar porosity, with a decreased percentage of porosity and pore size distribution shifted towards smaller pores, with a consequent increase in compressive resistance, decrease in water absorption coefficient, and increased percentage of micropores present in the material, indicating a potential improvement in mortar durability

    The Cratering History of Asteroid (21) Lutetia

    Full text link
    The European Space Agency's Rosetta spacecraft passed by the main belt asteroid (21) Lutetia the 10th July 2010. With its ~100km size, Lutetia is one of the largest asteroids ever imaged by a spacecraft. During the flyby, the on-board OSIRIS imaging system acquired spectacular images of Lutetia's northern hemisphere revealing a complex surface scarred by numerous impact craters, reaching the maximum dimension of about 55km. In this paper, we assess the cratering history of the asteroid. For this purpose, we apply current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models, coupled with appropriate crater scaling laws, allow us to interpret the observed crater size-frequency distribution (SFD) and constrain the cratering history. Thanks to this approach, we derive the crater retention age of several regions on Lutetia, namely the time lapsed since their formation or global surface reset. We also investigate the influence of various factors -like Lutetia's bulk structure and crater obliteration- on the observed crater SFDs and the estimated surface ages. From our analysis, it emerges that Lutetia underwent a complex collisional evolution, involving major local resurfacing events till recent times. The difference in crater density between the youngest and oldest recognized units implies a difference in age of more than a factor of 10. The youngest unit (Beatica) has an estimated age of tens to hundreds of Myr, while the oldest one (Achaia) formed during a period when the bombardment of asteroids was more intense than the current one, presumably around 3.6Gyr ago or older.Comment: Accepted by PSS, to appear on Lutetia Flyby special issu

    Mapping and Monitoring Urban Environment through Sentinel-1 SAR Data: A Case Study in the Veneto Region (Italy)

    Get PDF
    Focusing on a sustainable and strategic urban development, local governments and public administrations, such as the Veneto Region in Italy, are increasingly addressing their urban and territorial planning to meet national and European policies, along with the principles and goals of the 2030 Agenda for the Sustainable Development. In this regard, we aim at testing a methodology based on a semi-automatic approach able to extract the spatial extent of urban areas, referred to as \u201curban footprint\u201d, from satellite data. In particular, we exploited Sentinel-1 radar imagery through multitemporal analysis of interferometric coherence as well as supervised and non-supervised classi\ufb01cation algorithms. Lastly, we compared the results with the land cover map of the Veneto Region for accuracy assessments. Once properly processed and classi\ufb01ed, the radar images resulted in high accuracy values, with an overall accuracy ranging between 85% and 90% and percentages of urban footprint di\ufb00ering by less than 1%\u20132% with respect to the values extracted from the reference land cover map. These results provide not only a reliable and useful support for strategic urban planning and monitoring, but also potentially identify a solid organizational data\ufb02ow process to prepare geographic indicators that will help answering the needs of the 2030 Agenda (in particular the goal 11 \u201cSustainable Cities and Communities\u201d)
    • 

    corecore