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Abstract: Focusing on a sustainable and strategic urban development, local governments and public
administrations, such as the Veneto Region in Italy, are increasingly addressing their urban and
territorial planning to meet national and European policies, along with the principles and goals of
the 2030 Agenda for the Sustainable Development. In this regard, we aim at testing a methodology
based on a semi-automatic approach able to extract the spatial extent of urban areas, referred to as
“urban footprint”, from satellite data. In particular, we exploited Sentinel-1 radar imagery through
multitemporal analysis of interferometric coherence as well as supervised and non-supervised
classification algorithms. Lastly, we compared the results with the land cover map of the Veneto
Region for accuracy assessments. Once properly processed and classified, the radar images resulted
in high accuracy values, with an overall accuracy ranging between 85% and 90% and percentages of
urban footprint differing by less than 1%–2% with respect to the values extracted from the reference
land cover map. These results provide not only a reliable and useful support for strategic urban
planning and monitoring, but also potentially identify a solid organizational dataflow process to
prepare geographic indicators that will help answering the needs of the 2030 Agenda (in particular
the goal 11 “Sustainable Cities and Communities”).

Keywords: urban environment; urban planning; Sentinel; SAR; urban footprint; land cover;
2030 Agenda; SDG

1. Monitoring Urban Environments through Satellite Data

Considering the extreme impact of urban areas on the surrounding environments in terms of mass,
energy, and resource fluxes [1], combined with the overall growth of the world’s population, the constant
monitoring of urban environments is the key for a sustainable urban development. In this regard,
the 2030 Agenda for the Sustainable Development established 17 Sustainable Development Goals
(SDGs) [2–4], among which Goal 11—Sustainable Cities and Communities—aims at tackling the main
societal challenges associated with urban growth [5–7] .

In this regard, the role of Earth Observation and space technology is recognized by the United
Nations as a significant support for the achievement of the SDGs [8]. As such, remotely sensed data
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constitute a significant resource for mapping anthropized areas [9–12]. In fact, the built environment can
be identified and studied with different sensors, by analyzing its reflectance, thermal and microwave
properties, and night light [13].

The most common approaches for urban monitoring applications involve the use of imagery
data originated from multispectral sensors (from the visible to the near and short-wave infrared
wavelengths). Such approaches include, for example, pixel- and object-based classifications [14–21]
and the use of spectral indices [12,22–26]. On the other hand, some authors have used the imagery
data of SAR (synthetic-aperture radar) satellite systems, by considering the microwave properties of
urban environments [27–33], whereas some others have explored the thermal infrared properties of
urban areas (and land surface temperature) [34,35], and nighttime light satellite images [36].

Nonetheless, the accurate mapping of urban areas still remains challenging, due to limitations in
the spatial, spectral, and temporal resolution of remote sensing systems that often fail to obtain an
univocal response [13]. An additional challenge is represented by the wide heterogeneity of anthropic
structures in terms of size, shape, material composition, and fragmentation which might result in strong
spectral similarities with other land cover surfaces, such as bare soil and non-vegetated areas [13,14,37].

The general contest of this work focuses on urban and land surface monitoring from the point
of view of local governments and public administrations, such as the Veneto Region. Within the
latter, many different land cover and land use maps are currently being produced. These maps are
produced within multi-annual time intervals, and for different purposes and objectives, thus not always
constantly updated. Furthermore, they often rely on photogrammetric surveys related to specific
case studies limited to restricted target areas. On the other hand, the use of satellite data can provide
constantly updated information and overcome any spatial restriction.

In order to guarantee the reusability of our approach on larger spatial and time scales, we adopted
Open Data policies that involve the use of non-commercial satellite data. More specifically, we used
imagery data provided by the Copernicus satellites, and in particular focusing on Sentinel-1 SAR
(synthetic-aperture radar) imagery. This satellite system provides free data with global coverage at a
weekly revisit time [38–40].

Unlike optical sensors, SAR systems can provide imagery data without being affected by
cloud-cover, seasonality, and daytime variations, and can identify urban structures, as well. In fact,
vertical structures such as buildings and other anthropic constructions act as corner reflectors, generating
a particularly strong radar-echo signal (backscattered) that allows their easy identification. The sole
exceptions are very large roads, central squares, and wide runways (larger than 40–50 m, considering
we adopted an average Sentinel-1 geometric resolution of 15 m—see Section 2.3), which are likely
to act as mirror-like reflectors. Due to the low frequency of such wide infrastructures in our study
area and considering the scale of our analysis (see Section 2), we included them within the urban
environment. On the contrary, smooth surfaces such as water bodies and rough irregular surfaces
such as vegetated areas, respectively, act as mirror-like and diffuse reflectors, resulting in null or low
backscattered intensity [41].

Therefore, due to their “double-bounce” effect, urban structures appear brighter in SAR images
than all other surface types [13,41]. Moreover, the information provided by interferometric coherence
allows better identification of urban areas, significantly reducing the number of outliers and anomalous
values, with respect to the single backscattered images. Indeed, urban structures usually display
high coherence due to their regular geometric properties and relatively constant physical parameters
over time.

We focus on the analysis of an automatic and semi-automatic process to provide the extraction
of urban features over non-urban areas, taking into account the use of machine-learning algorithms.
In this work, we refer to “urban footprint” as the percentage of pixels classified as “urban” over the
total number of pixels on a specified study area. In order to perform reliable accuracy assessments,
we compared such results—obtained using 2018–2019 Sentinel data—with the land cover map of the
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Veneto Region, produced in 2015, as the most detailed and updated source of information for urban
environment in our study area.

Accordingly, our goal is to test a methodology for local governments and public administrations
that provides accurate and constantly updated information of urban footprint all over the Veneto
Region, which is essential for strategic urban planning, resource management, and decision-making
processes. This methodology may be a useful tool to support the production of geographic indicators
able to address the targets of Goal 11 in the 2030 Agenda [6,7], by feeding and updating the Sustainable
Development (SD) indicators associated with such targets [5–7]. In particular, this research intends
to prepare a data workflow to help feed the SD indicators 11.3.1 “Ratio of land consumption rate to
population growth rate” and 11.7.1 “Average share of the built-up area of cities that is open space
for public use for all, by sex, age and persons with disabilities”. These indicators are included in
targets 11.3 and 11.7, which aim, in a more general context, at enhancing sustainable urbanization
through sustainable urban planning and management, and providing universal access to safe, inclusive,
and accessible, green and public spaces [2].

Furthermore, local authorities and public administration constantly update and feed indicators
for strategic land-monitoring and sustainable urban development [5–7], at both regional and national
scales. In the case of Veneto Region in Italy, the constant update of such information is useful to feed
not only regional SD indicators [42], but also the national statistical set [43,44], and the European
monitoring framework.

2. Materials and Methods

2.1. RUS Copernicus: A New Frontier for Satellite Imagery Analysis

The ever-increasing availability of satellite imagery along with its growing complexity generates
the need of a powerful computational environment able to analyze these data. In this regard,
a consortium led by CS Group (Communication and Systèmes) developed the Research and User
Support (RUS) Service, in response to a call made in 2016 by the European Commission [45]. It aims at
developing an online free-access platform to promote the uptake of Copernicus data and support its
applications. This service is available upon registration and under request to all citizens within the
European Union (both public and private sector organizations and entities) [46].

During the development of this work, we requested and obtained five Level-A Virtual Machines
with powerful computing environment (four CPU cores and 16 Gb RAM each), a set of open-source
GIS software (such as ESA’s SNAP and QGIS), and shared cloud memory, allowing simultaneous
processing and analysis of the same type of data. These VMs were fundamental to effectively run all
the processes used in this work.

2.2. Sentinel-1 SAR Imagery

Sentinel-1 mission consists of two polar-orbiting satellites, carrying a single C-band
synthetic-aperture radar (SAR) instrument operating in four exclusive acquisition modes, with different
resolution (down to 5 m) and coverage (up to 400 km) [38–40].

In particular, in this work we made use of the Interferometric Wide swath (IW) mode products
at Level-1 Single Look Complex (SLC). The IW swath mode acquires data with a 250 km swath at
5 × 20 m spatial resolution (for SLC products). The wide-swath coverage is achieved by employing
the Terrain Observation by Progressive Scans (TOPS) acquisition mode, which acquires images by
recording different subsets of echoes of the SAR aperture, which are called “bursts” [47]. Sentinel-1
IW SLC products contain a total of three (single polarization) or six (dual polarization) sub-swath
images. For example, the images we examined consist of three sub-swaths (named IW1, IW2, and IW3),
each including both polarization (VV and VH). Furthermore, each sub-swath image consists of a series
of bursts.
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Within this work, we perform multi-temporal analysis, collecting a series of images from July 2018
to April 2019 that are displayed in Table 1. In particular, in order to achieve interferometry with
exact repeated coverage, we took into account only images derived from the same satellite sensor
(Sentinel-1A), therefore within a bi-weekly revisit time.

Due to the low rate of urbanization in recent years in Italy (in terms of increase of built-up
structures), the changes in urban footprint observed within the last couple of years can be neglected if
considering the spatial resolution of the Sentinel-1 SAR sensors. Therefore, we can consider urban
footprint as a constant value for all the Sentinel-1 images acquired within a single-year time frame.

All Sentinel mission data we used are available at the ESA Copernicus Open Access Hub [48].

Table 1. All the Sentinel-1 images used in this work. Downloaded from the Sentinel Open Access
Hub [48].

Sentinel-1 Image Acquisition Date

S1A_IW_SLC_1SDV_20190425T051855_20190425T051922_026542_030810_5EE3 25 April 2019
S1A_IW_SLC_1SDV_20190401T051854_20190401T051921_026592_02FB56_3D02 01 April 2019
S1A_IW_SLC_1SDV_20190320T051854_20190320T051921_026417_02F4DE_7428 20 March 2019
S1A_IW_SLC_1SDV_20190308T051854_20190308T051921_026242_02EE6B_9071 08 March 2019
S1A_IW_SLC_1SDV_20190224T051854_20190224T051920_026067_02E820_EDE7 24 February 2019
S1A_IW_SLC_1SDV_20190212T051854_20190212T051921_025892_02E1E6_044E 12 February 2019
S1A_IW_SLC_1SDV_20190131T051854_20190131T051921_025717_02DBAB_B7C7 31 January 2019
S1A_IW_SLC_1SDV_20190107T051855_20190107T051922_025367_02CEF3_3267 07 January 2019
S1A_IW_SLC_1SDV_20181226T051855_20181226T051922_025192_02C8A1_68F5 26 December 2018
S1A_IW_SLC_1SDV_20181214T051855_20181214T051922_025017_02C24E_64ED 14 December 2018
S1A_IW_SLC_1SDV_20181120T051857_20181120T051923_024667_02B608_37DF 20 November 2018
S1A_IW_SLC_1SDV_20181108T051857_20181108T051924_024492_02AF94_AAE5 08 November 2018
S1A_IW_SLC_1SDV_20181027T051857_20181027T051924_024317_02A97B_4686 27 October 2018
S1A_IW_SLC_1SDV_20181015T051857_20181015T051924_024142_02A3DE_8F35 15 October 2018
S1A_IW_SLC_1SDV_20180921T051856_20180921T051923_023792_02986D_908A 21 September 2018
S1A_IW_SLC_1SDV_20180909T051856_20180909T051923_023617_0292CA_5665 09 September 2018
S1A_IW_SLC_1SDV_20180816T051855_20180816T051922_023267_028792_045C 16 August 2018
S1A_IW_SLC_1SDV_20180804T051854_20180804T051921_023092_0281EF_C56B 04 August 2018
S1A_IW_SLC_1SDV_20180723T051854_20180723T051920_022917_027C74_723A 23 July 2018
S1A_IW_SLC_1SDV_20180711T051853_20180711T051920_022742_0276FD_1EC0 11 July 2018

2.3. Preprocessing Interferometric Coherence

The use and interpretation of SAR imagery require a series of complex pre-processing procedures,
which we ran on ESA’s SNAP software within the RUS environment. Such procedures refer to standard
preprocessing commonly applied to Sentinel-1 products to derive interferometric coherence [49].
In particular, we followed the approach described by RUS guidelines available in [50,51], which we
summarize in Figure 1.

On all SAR input images we took into account both polarizations (VH and VV), so that the output
coherence image is composed by two different raster files, related indeed to the different polarizations.
As for the processing workflow, we identified one of the three sub-swaths from the original product,
subsequently selecting only those bursts that cover our study areas. Furthermore, we computed
the coherence estimation setting the range window size to the default value of 20 pixels. Lastly,
for the terrain correction we used the Range-Doppler terrain correction, which involves the use of a
digital elevation mode (DTM) automatically downloaded from the Sentinel-1 repository, choosing
WGS84-UTM 32N as projected coordinate system and selecting an average output resolution of ≈15 m.

An example of output interferometric coherence image is displayed in Figure 2.
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Figure 2. Coherence image of the Venice area, within the Veneto Region, represented in the bottom
left frame with its green border within the Italian border (in red the study area). We produced this
image from two Sentinel-1A images acquired on 01 April 2019 and 20 March 2019 (VH polarization
only). In this sample area, we selected sub-swath number 2 (IW2) and bursts 5–9. Urban areas appear
distinctively brighter than all other land cover types, with coherence value generally greater than 0.7.
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2.4. Supervised and Unsupervised Classification Applied to Interferometric Coherence

The output coherence image consists of two different bands, reporting interferometric coherence
values (from 0 to 1) for two polarizations (VH and VV). Within this type of raster, it is possible to
extract urban footprint by applying supervised (and unsupervised) classification algorithms.

In the case of supervised classification, for training inputs we digitized the ROIs (regions of
interest) over a Sentinel-2 image (Table 1) covering the same target area (Figure 3). Since we were
interested in distinguishing only two different classes, i.e., urban and non-urban areas, when digitizing
the ROIs, we aggregated all non-urban land cover types into the same class (such as sparse vegetation,
forest, bare soil, and cultivated soil) (Figure 3). For further statistical analysis and high-resolution
image validation of ROIs, the reader is referred to Table S1 and Figure S1, respectively, within the
supplementary material. We then used such ROIs as input training sites for the classification algorithms
applied to the SAR images. The Sentinel-2 images we used for this purpose are listed in Table 2.
These Sentinel-2 images were processed in SNAP by extracting the bands on the visible wavelength
range (bands 2, 3, and 4) and exporting the selected spatial subset into a GeoTIFF.

Table 2. All the Sentinel-2 images used in this work. Downloaded from the Sentinel Open Access
Hub [48].

Sentinel-2 Image Acquisition Date

S2B_MSIL2A_20190330T101029_N0211_R022_T32TPR_20190330T144328 30/03/2019
S2A_MSIL2A_20180718T101031_N0208_R022_T32TQR_20180718T180146 18/07/2018ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 25 
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July 2018.

As for the supervised classification algorithms, we made use of the maximum likelihood (ML) [52]
and the random forest (RF) classifiers [53,54], both available in SNAP. Specifically, the ML classifier in
SNAP does not require setting of a threshold value for classifying pixels, thus no pixel will remain
unclassified. On the other hand, for the RF classifier we specified the maximum number of decision
trees, which we set to 500 as best value in order to obtain a good noise removal and a homogenous
response [55]. We firstly applied supervised classification algorithms to a single coherence image
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(Figure 2), made by two distinct raster files, which indeed are related to the different polarizations of
the same SAR image (VH and VV). Subsequently, we considered the use of multiple coherence images,
taken within a longer period of time (see next section).

Ultimately, we also made use of unsupervised classification algorithms, in particular the K-means
clustering, which does not require the digitalization of ROIs, but only the number of classes (or
“clusters”) set for the classification map. In fact, the distinct backscattered intensity and interferometric
coherence values of urban environments allow their sharp distinction from all other land cover types,
regardless of the level of anthropization, weather conditions, or environmental parameters. For this
reason, by setting only two classes for the K-means algorithm, it is likely that those classes will be
automatically attributed to urban and non-urban pixels. We performed the unsupervised classification
using the K-means algorithm available in SNAP. As in the case of the ML classifier, no threshold value
is required for the K-means algorithm in SNAP, and we left the default value of 30 as number of
iterations (which we found was a value high enough to identify the two cluster centers and successfully
separate the two classes).

2.5. Multitemporal Analysis of Interferometric Coherence

Following the guidelines available in the RUS web material [50,51], we repeated the processing
workflow of interferometric coherence, described in the previous section, to a series of Sentinel-1
images taken from April 2019 to July 2018 (Table 1), always related to the province of Venice and its
surroundings. Subsequently, we produced a series of interferometric coherence images, every time
processing two IW SLC images (taking into account both polarizations—VH and VV). Then, we stacked
all coherence images into a single raster file using the Stack tool in SNAP. A sample result is displayed
in Figure 4. By doing so, urban areas are likely to be identified more rigorously, progressively reducing
the error and noise in the images and increasing the overall accuracy.

Lastly, we applied the same classification algorithms described in the previous section.
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images from July 2018 to April 2019. In particular, this image displays in a band composition three
coherence images from April 2019, January 2019, and August 2018, respectively, in the red, green,
and blue channel. Urban areas are recognizable by their distinctively brighter color compared to all
other land cover types.
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2.6. Testing Multitemporal Coherence on Other Test Areas

After testing this approach on the first study area (i.e., the Venice area), in order to verify the
consistency and reliability of the method, we extended the same analysis on other test areas.

Firstly, we made use of the same ROIs digitized for the Venice region, but restricting the target area
on which we applied the supervised classification algorithms. In this case, we tested the efficiency of
our approach to extract urban footprint on smaller areas (at local scales), and over highly anthropized
regions (see Section 3.3). We then repeated the same procedures on a large urbanized area around the
city of Padua. Lastly, we tested the approach on a different environment, considering areas of similar
size, taking into account the heterogeneous province of Verona, in the western boundary of the Veneto
region, where dense residential and industrial areas alternate with sparsely populated (and thus less
urbanized) mountain environments. We followed the same approach that involves the digitalization
of ROIs over a Sentinel-2 image (Figure 3), which we used as input training sites for the supervised
classification algorithms applied to the multitemporal set of interferometric coherence images.

We also applied unsupervised classification to these other test areas.

2.7. Land Use/Land Cover Map of the Veneto Region as Reference for Accuracy Assessments

When dealing with automatic processes that involve feature extraction and image classification,
in order to estimate the reliability of any adopted approach, an accuracy assessment is always required.
Within the Veneto Region, in particular, different sources related to urban environments were available,
such as the land cover Map, the geo-topographic database, and cadastral data from the Land Registry
(the Italian “Catasto”). These sources provide detailed multi-layer cartographic information of urban
features and urban areas, with geometric resolution up to centimeters. However, we took into
consideration only the land cover map of the Veneto Region (which we will refer to as “Carta di
Copertura del Suolo”—CCS). Produced by Corvallis S.p.A. in 2015 through photointerpretation and
ground truth information, as an update of previous versions, this map is the most reliable and up to
date data source for the analysis of urban environment and the extraction of urban footprint. The map
is available online as shapefile [55], i.e., as a vector file, with land cover codes included in the attribute
table. These codes refer to the CORINE land cover classification (e.g., [56–58]). For further details
on the CORINE land cover nomenclature, the reader is referred to Table S2 and Figure S2 in the
supplementary material.

In order to perform accuracy assessments, we processed the vector input file of the CCS into a
new raster file, with the same pixel characteristics of the classification images (i.e., urban footprint)
obtained from Sentinel-1 SAR imagery. The processing workflow is summarized in Figure 5, whereas
an example of the input and output map is displayed in Figure 6.
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SAGA algorithms.
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Once clipped into the study area, we converted the vector CCS into a raster image, attributing to
the pixel values the codes of CORINE land cover classification. During the rasterization process, we set
the initial pixel size of 1 m in order to avoid incorrect aggregation of different classes and preserve
the high nominal resolution of the vector input file. Furthermore, we re-projected the CCS, originally
projected in the Italian “Fuso 12” coordinate system (EPSG code 6876), into WGS84-UTM Zone 32N
(EPSG 32632) as the Sentinel images.

The classification images produced from Sentinel-1 imagery consist of discrete rasters, with all
pixels classified into either “urban” or “non-urban” values (with values 1 and 0, respectively). Therefore,
once rasterized, we reclassified the CCS into “urban” and “non-urban” pixels, following the CORINE
classification codes. In particular, we set as “urban” only the pixels included in Classes 1.1 and 1.2,
referred to artificial surfaces, such as urban fabric and industrial, commercial, and transport units.
On the other hand, we excluded Classes 1.3 and 1.4, respectively, “Mine, dump, construction sites” and
“Artificial, non-agricultural vegetated areas”, since they are likely to be identified as non-urban surfaces
on SAR images. We classified all other Classes 2, 3, and 4 (agricultural areas, forest and seminatural
areas, and wetlands, respectively) as “non-urban”. Lastly, in order to perform the accuracy assessments,
we resampled the output raster to the output Sentinel-1 image resolution, which is 15 m. The entire
conversion process was run in QGIS. An example of a processed test area of the CCS is displayed in
Figure 6b. Finally, once the CCS was properly pre-processed to match all the characteristics of the
Sentinel-1 classification images, accuracy assessments were performed by means of the Semiautomatic
Classification Plugin (SCP) implemented in QGIS. This plugin produces an error matrix indicating all
statistical parameters, such as overall accuracy, user and producer accuracy, and Kappa hat coefficient
(or Cohen’s kappa coefficient) (e.g., see [41]).
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Figure 6. (a) Example in the Venice lagoon from the CCS (Carta di Copertura del Suolo) of the Veneto
Region, updated to 2015. Legend colors refer to the CORINE land cover classification, which we do not
report in this image for the sake of simplicity (see text for details). For additional details on the legend
the reader is referred to Figure S2 in the supplementary material. (b) Same image of (a), preprocessed
following the workflow displayed in Figure 5, displaying urban and non-urban pixels. We considered
the same test area as in Figure 5. Pixel values are 1 and 0, respectively, for urban and non-urban pixels.

3. Results and Discussions

3.1. Supervised Classification Applied to Interferometric Coherence

We tested the ML classifier within a restricted area in the province of Venice, submitting the
classified raster representing urban footprint (Figure 7a) to the SCP plugin for accuracy estimates,
using the CCS as reference map (see Section 2.6). The results displayed in Figure 7b and Table 3 show
an overall accuracy of ≈81% and a kappa hat classification value of ≈52%. In addition, when computing
the percentage of urban footprint over non-urban areas, we obtained a value of ≈28% from the
coherence image, which differs from the value computed within the CCS (≈26%) by less than 2% in the
same area (Table 3).
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Figure 7. (a) Supervised classification (using maximum likelihood (ML) classifier) run over an
interferometric coherence image including both polarizations (VH and VV), processed from two
Sentinel-1A images acquired in February 2019. (b) Accuracy assessments using CCS as a reference map.
This image displays the distribution of correctly classified and misclassified pixels. The black and green
pixels are related to pixels correctly classified as “non-urban” and “urban”, respectively. In red are
pixels erroneously classified as urban pixels (non-urban in the CCS)—false positives; whereas in blue
are urban pixels in the CCS, but classified as “non-urban” in the ML classification—false negatives.

Table 3. Error matrix related to ML classification performed on the coherence image from February 2019.
Urban footprint is computed as the percentage of urban pixels over the total number of pixels.

Reference Data (CCS) Urban Footprint

Classified Data
(ML) Non-Urban Urban Total Reference

Data (CCS)
Classified
Data (ML)

Non-urban 1,621,709 218,333 1,840,042 26.3054 28.2814
Urban 269,028 456,570 725,598
Total 1,890,737 674,903 2,565,640

Producer accuracy 85.7713 67.6497
User accuracy 88.1343 62.9233

Overall accuracy 81.0043

Kappa hat
classification 0.5216

By observing the accuracy image produced by the SCP plugin in QGIS (Figure 7b and Table 3),
the value of ≈28% obtained from the ML classification includes the result of a balancing between
a similar number of false positives and false negatives, respectively, in red and blue in Figure 7b.
However, two large blue spots are visible in the central and east portion of the target area. These spots
are related to local airport runways and flat port and industrial areas (mostly included within CORINE
Classes 1.2.3 and 1.2.4—see Table S2 in the supplementary material for details). As stated in Section 1,
anthropic flat areas that are significantly larger than SAR product geometric resolution (in this case
larger than 15 m) may sometimes not be recognized as urban pixels, since they act as mirror-like
reflectors. Nonetheless, considering the overall result, the misclassified pixels seem to be homogenously
distributed over the target area. Such errors are likely to be attributed mainly to difference in resolutions
between the original CCS and the Sentinel-1 products. In fact, considering the high geometric resolution
of the input reference raster (higher than 1 m for the input shapefile), it is likely that during the
preprocessing workflow of the CCS many pixels were aggregated (or “dissolved”) due to rasterization
and resampling. Therefore, many small areas could have resulted in misclassified pixels. As a result,
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some background noise between the CCS and the Sentinel-1 products is inevitable but can be neglected
from urban footprint estimates, since it uniformly affects both urban and non-urban pixels.

3.2. Stacking Multitemporal Image Series

Starting from the optimal results of urban footprint extraction obtained from a single coherence
image, we expanded the same approach over a multitemporal series of images, acquired from July 2018
to April 2019 (see Section 2.4). Once the coherence stack is created (Figure 4), we ran the same
classification workflow previously applied (with the same ROIs), firstly choosing random forest (RF)
as classification algorithm (it requires less computational power than the ML classifier) (Figure 8a).ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 25 
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Figure 8. (a) Supervised classification (using random forest (RF) classifier) run over a stack of
interferometric coherence images produced processing a time series of Sentinel-1A images acquired
from April 2019 to July 2018. (b) Accuracy assessments using CCS as a reference map (see Figure 7
for details).

Results from accuracy assessments (Figure 8b and Table 4) display equally reliable values with
respect to the single-coherence image. However, these results show a significant increase in accuracy,
in particular with reduction of background noise (i.e., false positives and false negatives—see previous
section). In fact, with an overall accuracy of ≈87% and a Kappa hat classification value of ≈65%,
the urban footprint extracted from the coherence stack image differs from the value of the CCS again
by less than 2%.

Table 4. Error matrix related to RF classification performed on the multitemporal coherence image in
the Venice study area.

Reference Data (CCS) Urban Footprint

Classified Data (RF) Non-Urban Urban Total Reference
Data (CCS)

Classified
Data (RF)

Non-urban 3,999,913 303,039 4,302,952 21.9629 23.3680
Urban 381,934 930,196 1,312,130
Total 4,381,847 1,233,235 5,615,082

Producer accuracy 91.2837 75.4273
User accuracy 92.9574 70.8921

Overall accuracy 87.8012

Kappa hat
classification 0.6521



ISPRS Int. J. Geo-Inf. 2020, 9, 375 12 of 21

We repeated the same classification, using the ML classifier, and obtained even better results
(Figure 9 and Table 5), with overall accuracy of ≈88%, Kappa hat coefficient of ≈66% and the percentage
of urban footprint differing from that of the CCS by less than 1%.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 13 of 25 
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Figure 9. (a) Supervised classification (using ML classifier) run over a stack of interferometric coherence
images produced processing a time series of Sentinel-1A images acquired from April 2019 to July 2018.
(b) Accuracy assessments using CCS as a reference map.

Table 5. Error matrix related to ML classification performed on the multitemporal coherence image in
the Venice study area.

Reference Data (CCS) Urban Footprint

Classified Data
(ML) Non-Urban Urban Total Reference

Data (CCS)
Classified
Data (ML)

Non-urban 4,031,904 309,149 4,341,053 21.9629 22.6894
Urban 349,943 924,086 1,274,029
Total 4,381,847 1,233,235 5,615,082

Producer accuracy 92.0138 74.9319
User accuracy 92.8785 72.5326

Overall accuracy 88.2621

Kappa hat
classification 0.6616

3.3. Expanding Multitemporal Analysis to Other Test Areas

We tested the consistency of the method within smaller areas (local boundaries), performing
additional supervised classifications (using ML classifier) and accuracy assessments over two restricted
areas, clipped from the previous target area of the Venice region. The results displayed in Figure 10
provide additional constraints to the method, attesting high accuracy values at local scales (Table 6),
with overall accuracy >80%, kappa coefficient >60%, and a percentage of urban footprint differing
from that of the CCS by less than 2%, especially within highly anthropized areas (Figure 10b).
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Figure 10. Supervised ML classification (a) and related accuracy assessments (b) performed on two
restricted areas included within the main study area taken into account so far, using a series of coherence
images that were processed from Sentinel-1A images (April 2019–July 2018). For a better visualization,
in this image we omitted the Legend (see Figures 7–9).

Table 6. Error matrix related to ML classification performed on the two restricted areas in the Venice
region. Letters (a) and (b) are referred to the same letters in Figure 10.

(a)

Reference Data (CCS) Urban Footprint

Classified Data
(ML) Non-Urban Urban Total Reference

Data (CCS)
Classified
Data (ML)

Non-urban 305,855 39,855 345,710 29.0441 27.7966
Urban 33,882 99,208 133,090
Total 339,737 139,063 478,800

Producer accuracy 90.0270 71.3403
User accuracy 88.4716 74.5420

Overall accuracy 84.5996

Kappa hat
classification 0.6216

(b)

Reference Data (CCS) Urban Footprint

Classified Data
(ML) Non-Urban Urban Total Reference

Data (CCS)
Classified
Data (ML)

Non-urban 229,202 46,794 275,996 47.6294 48.0527
Urban 49,043 206,261 255,304
Total 278,245 253,055 531,300

Producer accuracy 82.3742 81.5084
User accuracy 83.0454 80.7904

Overall accuracy 81.9618

Kappa hat
classification 0.6386

Subsequently, we took into account the same stack of coherence images and the same ROIs used
in the previous attempts to produce an image of urban footprint in the highly anthropized region
of the city of Padova and its surroundings (again, using the ML classifier) (Figure 11a). Accuracy
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assessments (Figure 11b and Table 7) display always the same values, and the same low error with
respect of the CCS in terms of percentage of urban footprint (differing by less than 3%).
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Figure 11. (a) Supervised classification (using ML classifier) run over the same stack of interferometric
coherence images used for the Venice area, but in a different target area, which includes the province of
Padova. (b) Accuracy assessments using CCS as a reference map.

Table 7. Error matrix related to ML classification performed on the target area of Padova (Figure 11).

Reference Data (CCS) Urban Footprint

Classified Data
(ML) Non-Urban Urban Total Reference

Data (CCS)
Classified
Data (ML)

Non-urban 1,637,326 184,975 1,822,301 33.1075 35.7755
Urban 260,678 754,414 1,015,092
Total 1,898,004 939,389 2,837,393

Producer accuracy 86.2657 80.3090
User accuracy 89.8494 74.3198

Overall accuracy 84.2936

Kappa hat
classification 0.6525

Lastly, we analyzed a different area in the province of Verona, which is composed by different
environments (including mountain environment) and surface types. We repeated the processing
workflow in SNAP on different sub-swaths of the same Sentinel-1 input images (Table 2). We digitized
new ROIs (Figure 12a), always subdivided into “urban” and “non-urban” classes, performing the
classification with the ML algorithm. Further statistical analysis and high-resolution image validation
of ROIs are available in Table S1 and Figure S1, respectively, within the supplementary material.
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Figure 12. (a) The test area of Verona as seen from a Sentinel-2B image from March 2019 (see Table 2),
displaying the ROIs digitized as training inputs for machine learning algorithms. (b) Supervised
classification (using ML classifier) run over the series of interferometric coherence images previously
considered. (c) Accuracy assessments using CCS as a reference map. The scale indicated in (a) is
equivalent in all three images, therefore we did not replicate it for a better visibility of the result images.

Results from accuracy assessments (Figure 12c and Table 8) display the same high accuracy values
previously obtained in other test areas, with overall accuracy close to ≈90%, kappa coefficient >60%,
and a percentage error from the CCS lower than ≈1% in terms of urban footprint.

Table 8. Error matrix related to ML classification performed on the target area of Verona (Figure 12).

Reference Data (CCS) Urban Footprint

Classified Data (ML) Non-Urban Urban Total Reference Data (CCS) Classified Data (ML)

Non-urban 3,307,080 229,608 3,536,688 18.9240 19.7720
Urban 267,827 604,815 872,642
Total 3,574,907 834,423 4,409,330

Producer accuracy 92.5081 72.4830
User accuracy 93.5078 69.3085

Overall accuracy 88.7186

Kappa hat classification 0.6387

3.4. Unsupervised Classification: The Ultimate and Completely Automatic Approach to for Urban Mapping

Due to the successful results of multitemporal analysis of interferometric coherence combined
with machine learning algorithms (using supervised classification algorithms, so far) we attempted a



ISPRS Int. J. Geo-Inf. 2020, 9, 375 16 of 21

new approach to extract urban footprint, which involves the use of unsupervised image classification.
In particular, once the stack of coherence images is obtained following the same processing workflow
(Figure 1), we made use of the K-means classifier. Therefore, we performed unsupervised classification,
applying the K-means algorithm to the same test areas previously analyzed with supervised
classifications (Figure 13a–c, respectively, in the area of Venice, Padova, and Verona).
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Figure 13. K-means unsupervised classification and related accuracy assessments (using CCS as
reference map) performed on the same test areas previously analyzed with supervised classification
algorithms. (a) Venice study area. (b) Padova study area. (c) Verona study area. For all the study areas,
the scale indicated in the accuracy image on the right is equivalent to the relative classification image
on the left, therefore we did not replicate it for better visibility.
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The results (Table 9a–c) are surprisingly similar to those obtained with the ML classifier, in some
cases showing even higher accuracy, with overall accuracy >90% and kappa coefficient up to ≈70% (in
the test area of Verona). The resulting urban footprint resulted again in percentage errors lower than
1% compared to the CCS.

Table 9. Error matrix related to K-means classification performed on the target area of Venice (a),
Padova (b) and Verona (c) (see Figure 13).

(a)

Reference Data (CCS) Urban Footprint

Classified Data
(K-means) Non-Urban Urban Total Reference

Data (CCS)
Classified Data

(K-means)

Non-urban 4,090,775 371,408 4,462,183 21.9654 20.5671
Urban 292,854 862,511 1,155,365
Total 4,383,629 1,233,919 5,617,548

Producer accuracy 93.3194 69.9001
User accuracy 91.6765 74.6527

Overall accuracy 88.1752

Kappa hat
classification 0.6470

(b)

Reference Data (CCS) Urban Footprint

Classified Data
(K-means) Non-Urban Urban Total Reference

Data (CCS)
Classified Data

(K-means)

Non-urban 1,644,911 221,664 1,866,575 33.1048 34.2606
Urban 254,482 718,298 972,780
Total 1,899,393 939,962 2,839,355

Producer accuracy 86.6019 76.4178
User accuracy 88.1246 73.8397

Overall accuracy 83.2305

Kappa hat
classification 0.6247

(c)

Reference Data (CCS) Urban Footprint

Classified Data
(K-means) Non-Urban Urban Total Reference

Data (CCS)
Classified Data

(K-means)

Non-urban 3,408,678 238,588 3,647,266 18.9240 17.2391
Urban 164,748 595,298 760,046
Total 3,573,426 833,886 4,407,312

Producer accuracy 95.3896 71.3884
User accuracy 93.4584 78.3239

Overall accuracy 90.8485

Kappa hat
classification 0.6912

These values confirm the reliability and accuracy of a completely automatic approach in terms of
processing workflow, which, starting from a series of Sentinel-1 images, allows the extraction of urban
footprint by means of multitemporal analysis of interferometric coherence and the use of unsupervised
classification algorithms.
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4. Conclusions

In this work, we aimed at developing an automatic (or semi-automatic) process able to map
and monitor urban environment, and in particular to extract the spatial extent of urban features over
non-urban areas (i.e., urban footprint). During the entire project development we had access to a
series of Virtual Machines as powerful computational environment provided by the Copernicus RUS
service [45,46].

When dealing with urban mapping, different data sources can be exploited in several different
ways. In this work, we investigated the use of Sentinel-1 SAR imagery and in particular IW Level-1
SLC products. The high backscattered intensity of urban areas, acting as corner reflectors, proved to be
highly effective when mapping urban environments. In particular, interferometric coherence highlights
all surfaces with constantly high backscattered intensity, fixed shape, and constant physical parameters
through time. Such surfaces are indeed urban areas.

We stacked a series of coherence image related to a multitemporal series of images (from
April 2019 to July 2018) in order to increase the accuracy of the classified coherence images.
We performed a supervised classification using the random forest and maximum likelihood classifiers
and then performed accuracy assessments, considering the properly preprocessed CCS as a reference.
The classified images resulted in a high overall accuracy (up to 90%). Moreover, we obtained a
percentage of urban footprint significantly precise compared to the values extracted from the CCS, with
errors lower than 1%–2%. We repeated the same procedure on many other test areas, analyzing restricted
areas around Venice, and other large areas around Padova and Verona (the latter including mountain
environments, as well) obtaining similar accuracy values. Finally, we attempted a completely automatic
approach in terms of processing workflow, which involves the use of unsupervised classification (with
no need of digitization of training sites). We applied the K-means algorithm to the interferometric
coherence stack image, exploiting the separability of urban environments with respect to all other
surface types. Surprisingly, we obtained the same high accuracy values and, in some cases, even better
results compared to the supervised classification approach.

By repeating these procedures within constant time intervals, it is possible to monitor the
development of urban environment through time potentially in any region of the world. Considering
our results, this methodology should provide reliable accuracy values within time intervals of
6–12 months. Moreover, since our methodology relies on open source tools and software, and globally
available free data, we especially encourage the use of similar approaches for developing countries
with emerging economies, considering more dynamic urban areas, as well.

As such, in the context of the 2030 Agenda for the Sustainable Development [2–4], in particular
for Goal 11—Sustainable City and Communities, satellite imagery and Earth Observation technologies
can play an important role for extracting and updating data to feed SD indicators. More specifically,
we refer to targets 11.3 and 11.7, and in particular SD indicators 11.3.1 and 11.7.1 [5–7] (see Section 1
for details). Therefore, from the perspective of local governments and public authorities, we propose
an organized dataflow coming from Sentinel-1 SAR data, in order to provide not only a helpful tool for
a sustainable city development and urban planning at local and regional scales, but also help feeding
such indicators for the national statistical set [43,44] and the European monitoring framework.

That being said, some limitations concerning Sentinel data still remain, mostly related to the
limited geometric resolution of the Sentinel satellites with respect to other commercial satellites.
Moreover, the first Copernicus Sentinel mission (Sentinel-1A) was launched in 2014, limiting so far
the possibility of performing multitemporal analysis in the previous decades (using Sentinel data
only). Nonetheless, the ever-increasing availability of high-resolution optical and radar satellite sensor,
along with the growing awareness of open data policies, will definitely encourage the use of satellite
images to tackle environmental changes and will promote new applications and technologies, in all
fields, including urban applications.
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